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Abstract. Despite numerous efforts to mitigate Cross-Site Scripting
(xss) attacks, xss remains one of the most prevalent threats to mod-
ern web applications. Recently, a number of novel xss patterns, based
on code-reuse and obfuscated payloads, were introduced to bypass dif-
ferent protection mechanisms such as sanitization frameworks, web ap-
plication firewalls, and the Content Security Policy (csp). Nevertheless,
a class of script-whitelisting defenses that perform their checks inside
the JavaScript engine of the browser, remains effective against these new
patterns. We have evaluated the effectiveness of whitelisting mechanisms
for the web by introducing “JavaScript mimicry attacks”. The concept be-
hind such attacks is to use slight transformations (i.e. changing the leaf
values of the abstract syntax tree) of an application’s benign scripts as at-
tack vectors, for malicious purposes. Our proof-of-concept exploitations
indicate that JavaScript mimicry can bypass script-whitelisting mech-
anisms affecting either users (e.g. cookie stealing) or applications (e.g.
cryptocurrency miner hijacking). Furthermore, we have examined the ap-
plicability of such attacks at scale by performing two studies: one based
on popular application frameworks (e.g. WordPress) and the other fo-
cusing on scripts coming from Alexa’s top 20 websites. Finally, we have
developed an automated method to help researchers and practitioners
discover mimicry scripts in the wild. To do so, our method employs sym-
bolic analysis based on a lightweight weakest precondition calculation.

Keywords: Cross-site Scripting · JavaScript · Whitelisting · Mimicry
Attacks

1 Introduction

For more than 15 years, Cross-site Scripting (xss) has been one of the top secu-
rity problems on the web. Researchers and practitioners have been either intro-
ducing different xss variations [1–7], or developing approaches to defend against
such attacks [8–13]. In practice, xss attacks are usually addressed through the
utilization of xss sanitization frameworks [14, 15] which encode and transform
the input before further processing by the application to remove any potentially
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dangerous parts of the input, Web Application Firewalls (wafs) [16] which block
potentially malicious requests and the Content Security Policy (csp) [17] which
enforces specific policies for all scripts in a website.

Recently, a number of novel attacks have been introduced to bypass the
aforementioned defenses. Specifically, Lekies et al. [1] have introduced a novel
form of code-reuse attacks on the web by employing “script gadgets”. In such
an attack, a malicious user injects html markup into a website with an xss
vulnerability. Initially, such content will not be identified as an executable script
code. However, throughout the application’s lifetime, the various script gadgets
of the website will transform the injected content into a valid xss attack, thus
bypassing a variety of defense mechanisms including wafs, sanitizers and csp. In
addition, Heiderich et al. [18] employed encryption techniques to turn malicious
scripts into obfuscated payloads that can bypass a number of defenses including
sanitization frameworks.

Given the impact of such attacks, it is important to evaluate the effective-
ness of other defenses against these patterns. In particular, a class of proposed
defenses based on script-whitelisting [13, 19–22] remains effective against the
aforementioned attacks. A whitelisting mechanism that protects web applica-
tions from xss attacks operates in two modes: First, it creates unique identifiers
for every valid script during a training phase, that takes place before the appli-
cation goes on-line. These identifiers combine elements that are extracted from
either the script, e.g. a part of its Abstract Syntax Tree (ast), or its execu-
tion environment, such as the url that triggered the execution. All identifiers
are stored into a whitelist. Then, during production, only scripts that generate
identifiers that exist in the whitelist will be identified and approved for execution.

The most recent whitelisting mechanisms [13, 19, 22] perform such checks at
runtime, in the JavaScript engine of the browser. Thus, they can examine all
scripts that reach a browser from alternative routes and can deal with various
attacks such as Document Object Model (dom)-based xss [3]. The reason why
whitelisting defenses can hinder code-reuse attacks on the web is that the payload
of a script gadget per se, is not a script coming from the application. When this
script reaches the JavaScript engine of the browser and an identifier is generated,
this identifier will not be in the whitelist (even if identifiers for the different script
gadgets may exist), thus the attack will be prevented. In the case of an obfuscated
payload, whitelisting mechanisms will prevent the attack after its decryption on
the client-side when it reaches the engine. At this point, the mechanisms will
prevent its execution because they will not find a corresponding identifier.

Given that whitelisting mechanisms can potentially thwart advanced xss at-
tacks such as the above, it is significant to assess the security guarantees they
offer. A remaining avenue of attacking a whitelisting defense is through amimicry
attack. The concept behind a mimicry attack is to employ a rather benign func-
tionality of the target system to achieve a different outcome, that in turn serves
a malicious purpose. Different kinds of mimicry have been introduced to circum-
vent intrusion detection systems [23] and the anomaly detection mechanisms of
unix [24].
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The authors of some of the aforementioned whitelisting mechanisms point
out that mimicry attacks could affect their defenses [13,19]. However, they argue
that such attacks are not applicable on a large-scale and downplay their potential
impacts. This is mainly because there has not been an in-depth investigation of
JavaScript mimicry attacks in terms of practicality and severity. In this paper,
our goal is to answer the following question:
What is the impact of JavaScript mimicry attacks against whitelisting defenses

for the Web?
To answer this question, we present the first large-scale study on JavaScript
mimicry attacks and how they can bypass whitelisting mechanisms. In the con-
text of our study, adversaries can either employ the benign scripts of an appli-
cation exactly as they are, or craft and use script variations, i.e. scripts with the
same ast but with different leaf values. Such variations can be used because the
mechanisms usually do not take into account the whole ast of a script, especially
if the script is dynamic and its values change frequently.

Our contributions can be summarized as follows:
1. We introduce JavaScript mimicry attacks, a variation of xss attacks. Based

on a formal attack model, we identify different attack patterns and show that
they can have a major impact to either users or websites, e.g. cookie stealing
and token modification (Section 3).

2. Through JavaScript mimicry, we evaluate the effectiveness of whitelisting for
the web. Specifically, we point out the weaknesses that may allow mimicry
attacks to circumvent such mechanisms and highlight the features that help
them prevent some of the attacks. To do so, we examine the applicability of
JavaScript mimicry on a large scale by examining hundreds of scripts coming
from vulnerable versions of widespread application frameworks (e.g. Word-
Press) and Alexa’s top 20 popular websites (Section 4).

3. We introduce an automatic method that can analyze a set of given scripts to
identify potential attack vectors. Our method employs symbolic analysis based
on a lightweight weakest precondition calculation [25] to decide if a mimicry
script can be generated from these vectors. Throughout our evaluations, our
approach did not produce any false alarms and caused a minimum of false
negatives (Section 5).

4. We provide a number of recommendations derived from our study. The rec-
ommendations can be of use to researchers who intend to develop new and
more robust whitelisting mechanisms for the web (Section 6).

2 Whitelisting for the Web
Whitelisting is based on a number of ideas introduced in the original intrusion
detection framework [26, 27]. We analyze these concepts and identify the key
characteristics of each mechanism that implements this approach.

2.1 General Principles
To protect web applications from xss attacks, a whitelisting mechanism operates
in two phases. First, it “learns" all benign scripts, usually in the form of unique
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Fig. 1: The two different setups for performing whitelisting on the Web. Notably,
setup 1 is vulnerable to dom-based xss attacks [3, 27].

identifiers, during a training phase. This is done in different ways depending on
the implementation. Then, only those scripts will be recognized and approved
for execution during production.

The authors of whitelisting mechanisms for the web, follow two different se-
tups illustrated in Figure 1. In the first one, a server-side proxy is responsible
for enforcing the whitelisting by examining the scripts included in the http
responses. xssds [21] and swap [20] are two typical mechanisms that follow
this setup. The second setup involves a security layer that wraps the JavaScript
engine of the browser. When a request is performed, this layer receives the iden-
tifiers from the server-side. Then, based on the identifiers it distinguishes benign
scripts from malicious ones.

The major difference between the two setups is that the first one is vulnerable
to dom-based xss attacks [3,27]. This is because in such an attack, the payload,
hidden in a url sent to the web user, never reaches the server. As a result, it is
not contained in the http response and the proxy will not prevent the attack.
Note also that the first whitelisting mechanisms do not support dynamic scripts
and only focus on the creation of identifiers for static ones. This significantly
restricts the applicability of those mechanisms due to the dynamic nature of
today’s websites.

2.2 Recent Developments

The most recent whitelisting defenses follow setup 2 (see Figure 1), are able
to handle dynamic scripts, and can prevent a variety of xss attacks including
code-reuse attacks [1]. When they generate a script identifier, the mechanisms
associate different elements that come either from the script or from its execution
environment. There are three mechanisms that implement this method, namely:
xss-guard [22], sicilian [13], and nsign [19]. Table 1, illustrates the different
elements that each mechanism takes into account.

xss-guard [22] is not a recent approach per se, but it is the first that aimed
to defend against xss attacks on the client-side. During training, xss-guard
extracts the ast of a script and associates it to the corresponding http response.
When in production, the mechanism examines again the ast of each script and
prevents the ones that are not associated with a response. Apart from using the
ast of a script, sicilian [13] looks for static url references in the script to check
for interactions with other websites. Furthermore, sicilian incorporates the url
that triggered the execution of the script as an element, and handles scripts
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Table 1: The different elements considered by whitelisting mechanisms
that follow setup 2.

Mechanism

Script-Related Script-Independent
ast Literals Static url urls Assembled url Triggering Script eval

parts References at Runtime the Execution Type

xss-guard [22] X 7 7 7 7 7 7

sicilian [13] X X* X 7 X 7 X
nsign [19] X 7 X X X X X
*sicilian includes literals (i.e. constant-strings and integer values) only for specific scripts
that are specified by the developers. These scripts should not contain values that con-
stantly change over time because that would lead to false positives.

that are passed as arguments to the eval function. nsign [19] considers similar
elements with sicilian. However, it does not take into account the entire ast of
a script, focusing more on specific keywords and their number of appearances.
Also, it examines the type of the script (i.e. if it is inline or external) and the
dynamic urls that may be passed as arguments to the script at runtime.

As we will observe in the upcoming section, an attack vector arises because
of the ways that the above mechanisms handle the ast of a script. Specifically,
when xss-guard compares asts during production mode, it also checks for an
exact match of lexical entities. Nevertheless, constants are not compared literally.
nsign does not consider such values too when it examines a script. On the other
hand, sicilian includes constant strings and integer values as elements. However,
in the case of dynamic scripts (that include frequently changing values), the
mechanism lets developers exclude such elements.

3 JavaScript Mimicry under Whitelisting
To evaluate whitelisting mechanisms we introduce JavaScript mimicry attacks.
Specifically, we provide a formal model and present different attack patterns.

3.1 Attack Model
For any JavaScript expression, we consider the abstract syntax tree T of the
expression and denote by literal any constant value in this expression, such as
constant-strings or integer values. For an ast Tl, we denote by l the set of literals
for Tl and we define Tl/σ as the tree resulting by substituting the set of literals
l with a set of literals σ. For example in Figure 2 we display the ast for the
expression JQuery(’post-1’).hide(), with the corresponding literal “post-1”
in the left subtree and the ast resulting by substituting the literal “post-1” with
the literal “get”.

The attacks we consider in this paper are constructed by replaying or ma-
nipulating valid scripts found in the context of vulnerable websites. More specif-
ically, for a website, we consider the set T of asts for all expressions in the
website. Specifically, this set contains asts coming from either inline and ex-
ternal scripts. Inline scripts refer to JavaScript code contained within html
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Fig. 2: (Left) ast for the expression JQuery(’post-1’).hide(). (Right) ast
for the expression JQuery(’get’).hide() resulting by substituting the literal
post-1 with the literal get.

<script> ...</script> tags, or code included in event handlers (e.g onclick
= "..."). External scripts are typically referenced by a web page using the src
attribute of the script tag and they are included in external documents. Then,
we consider the set:

A = {Tl/σ : Tl ∈ T ∧ σ is a substitution of literals for l}

The set A contains all asts of valid JavaScript expressions, which result by tak-
ing all expressions found in the target website and performing arbitrary changes
in their literals. We call the set A to be the set of mimicry expressions for
the target site. Notably, a script is included in A only if it is invoked by the
application and thus, there is an identifier in the corresponding whitelist.

The goal of the attacker is to use the restricted set of statements in A, in
order to construct a target exploit program. The set of useful exploit programs
can vary from application to application and is discussed in greater detail in the
following section. Recall that our attack model is based on the fact that whitelist-
ing mechanisms do not consider the entire ast of a script (see Subsection 2.2)
to deal with dynamic scripts that change frequently [13,21].

3.2 Attack Patterns

We have identified two basic attack patterns that can bypass whitelisting mech-
anisms: script replay and tampering literals. The concept behind script replay is
to extract scripts from a website and inject them as they are into another po-
tentially vulnerable part of the same site. When they run in the context of this
part though, they will affect the functionality of the application in a different
way. By tampering literals, attackers can exploit the fact that string-constants
and integer values are not considered as elements of the corresponding unique
identifier generated by the defenses. Tampering literals may involve either (1)
the simple modification of the web page’s properties, or the utilization of (2)
dom elements and (3) Ajax requests.

In an Ajax-based mimicry attack we employ jQuery’s .ajax() function to
make asynchronous requests. A common example is presented in Figure 3a where
a script makes a request to a specific url to retrieve some data. With a mimicry
attack, we can execute this function with a different element and url.

A dom manipulation mimicry attack employs code constructs that manipu-
late the dom elements of a page. As an example, consider an application that
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$(document).ready(function(){
$("button").click(function(){

$.ajax( {
url: "foo.com",
success: function(result){

// do something with the returned data.
}});

});
});

(a) Ajax request

(b) dom element initialization

document.getElementById("example").innerHTML =

"example_value"

ytcfg.set({

'XSRF_TOKEN': 'token_value'
})

(c) Setting a property

Fig. 3: Potential attack vectors.

specifies the value of an html element named example, using the script of Fig-
ure 3b. This allows us to modify the content of this element and display another
element, by changing the example_value.

An attack that employs property modification targets scripts that explicitly
define certain object properties, such as personalization specifications and to-
kens. For example, consider the script in Figure 3c where the argument values
of ytcfg.set are literals. Through mimicry, attackers can modify the value of
XSRF_TOKEN thus changing the web page’s csrf token value.

4 Proof-of-Concept Exploitations

We searched for proof-of-concept exploitations in two different use cases. First,
we analyzed vulnerable versions of well-known application frameworks and per-
formed real-world exploitations. Then, we looked for potential attacks that can
affect Alexa’s top 20 websites assuming the existence of an arbitrary vulnerability
(worst-case assumption).

In all cases, we assumed that the entity under attack employs one of the
mechanisms discussed earlier (Subsection 2.2). Our initial intention was to deploy
the mechanisms and examine their effectiveness in practice. However, nsign was
the only mechanism available [28] and consequently the only mechanism that we
could install. The effectiveness of the other mechanisms was examined based on
their design principles.

As we discovered, mimicry attacks can have different impacts. Table 2, il-
lustrates the impact of each attack pattern on the aforementioned use cases.
Key impacts involve cookie stealing, cryptocurrency miner hijacking, api ma-
nipulation, message handling, token modification and cookie deletion. Notably,
we did not manage to find valid Ajax-based attacks for any of the application
frameworks that we examined. This is mainly because the applications mainly
use submission forms instead of Ajax requests.

Below, we present one attack per pattern for brevity. We also present two ad-
ditional exploitations in our Appendix A. Furthermore, we discuss how the attack
can bypass these mechanisms and if it cannot, we highlight the design choices
that led to the prevention. Table 3, summarizes which of the identified attack
patterns can bypass each of the examined mechanisms. Note that the mecha-
nisms that follow setup 1 can be easily bypassed because they cannot handle
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Table 2: Attack patterns and their impacts in the different use cases.

Use Case Tampering Literals Replay Scripts
dom Manipulation Ajax-Based Property Modification

Frameworks he, r, fl, mh 7 cmh he, r, mh
Alexa top 20 he, r, fl, am fl, cs, am tm, cd cd, fl, r, he

cs: Cookie Stealing, cd: Cookie Deletion, tm: Token Modification, am: api Ma-
nipulation, r: Redirection, cmh: Cryptocurrency Miner Hijacking, he: Hide Ele-
ments, mh: Message Handling, fl: Force Logout

dynamic scripts (which we extensively use in our exploitations). Finally, notice
that some of the mechanisms can be bypassed under certain circumstances. If
this is the case, we describe these circumstances in detail.

4.1 Application Frameworks
We have examined popular frameworks such as WordPress, Joomla, and Moodle
to highlight how mimicry attacks may affect multiple websites that are based
on such frameworks. For instance, WordPress currently powers over 30% of the
web [29] and Moodle is a prevalent cms (Content Management System) frame-
work for academic applications.

Methodology Initially, we explored the lists of published xss vulnerabilities
for each framework (and their plug-ins), as reported by cve [30]. In the case of
WordPress we found more than 100 related reports (23 of them were reported
since 2017). We also found 68 and 81 reports for Joomla and Moodle respectively.

Then we downloaded and installed different vulnerable versions of each frame-
work. In addition, we examined vulnerable versions of popular WordPress plug-
ins (e.g. the Participants Database, which is used in more than 320.000 installa-
tions).

Finally, we inspected all scripts used by each framework to identify poten-
tial attack vectors. Then, by using the selected scripts we performed real-world
exploitations.

Attacks We present a dom manipulation and a property modification attack,
and discuss if and how the whitelisting defenses can prevent them.

First, we exploited a vulnerability found in the Participants Database plug-in
of WordPress 4.7.1 (described in cve-2017-14126 [31]). In particular, we man-
aged to perform a cryptocurrency miner hijacking attack. First, we installed
a popular JavaScript cryptocurrency miner, Coinhive [32]. To load the miner a
standard inline script was written to (a) include the library as an external script,
(b) provide the necessary credentials (wallet address) of the user whose balance
will be increased:

var miner = new CoinHive.Anonymous('BENIGN_KEY');

and (c) start the miner. Note that, when a user visited the page, a pop up window
appeared requesting permission to allow the use of the browser’s resources to
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Table 3: Attacks that can bypass the mechanisms. In some cases the attacks are successful under specific
circumstances, as we explain in our proof-of-concepts.

Mimicry Attacks

Approach Mechanism Tampering Literals Replay Scripts DOM-XSS
dom Manipulation Ajax-Based Property Modification

Client-Side
xss-guard [22] X X X X 7

sicilian [13] X uc X X 7

nsing [19] uc uc X X 7

Server-Side xssds [21] X X X X X
swap [20] X X X X X

uc: Under Circumstances

mine. If the user agreed, the mining started. Then, we injected the same inline
script but with a different wallet address. An identical pop up window began to
appear each time users visited the page. However, if they agreed the mining was
done for a different wallet address.

The aforementioned attack can bypass all the whitelisting mechanisms pre-
sented in Section 2.2, because the ast stays intact (except for the literal), there
is no interaction with any external url and the script type does not change
(inline).

We were also able to handle messages via mimicry in the Moodle framework,
version 2.9. This version contains a reflected xss vulnerability, as reported in
cve-2016-2153 [33]. To perform our attack we employed a function used on
behalf of the website to show a specific message (i.e. a false notification about a
student’s grade), named show_confirm_dialog. Specifically, we formed a well-
crafted url with the following script as a parameter:

M.util.show_confirm_dialog('click', {'message': 'Bob \'s grade is 9'})

To launch this attack, one could use phising techniques and send the url to
a Moodle user. This attack could bypass all mechanisms, except for nsign, be-
cause show_confirm_dialog is included in an external script. nsign identified a
different type for this script (inline), thus preventing the attack.

4.2 Alexa Top 20 Study

In an attempt to see how JavaScript mimicry attacks would affect popular sites
even if they employ whitelisting, we examined the scripts of Alexa’s Top 20
websites.

Methodology We retrieved the scripts of the top 20 Alexa websites from a pub-
licly available dataset [34] that has already been used for research purposes [35].
Overall, we examined 381 inline scripts and 70 external scripts.

Given that there are no reported xss defects for Alexa’s top 20 websites, we
assume that their pages contain at least one xss vulnerability which could serve
as a stepping stone for our mimicry attacks. This assumption is meaningful, since
such vulnerabilities are reported almost every day for popular websites.

Table 4 illustrates the overall results regarding the Alexa study. First, it
includes the number of inline and external scripts per site. In addition, it shows
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1 function getHistory() {
2 var e = decodeURIComponent(

escape(getCookie("pin"))), t =
getCookie("_ghis"), o = window.
document.location.host.toLowerCase().indexOf
("360buy.com") >= 0 ? "360buy" :
"jd";

↪→
↪→
↪→
↪→
↪→

3 if (null == t && null != e) {
4 var r = "//gh." + o + ".com/BuyHis.aspx?mid="
5 + encodeURIComponent(e);
6 $.ajax({
7 url: r,
8 type: "GET",
9 dataType: "jsonp",

10 success: function(e) {
11 // Success Callback
12 }
13 })
14 }
15 }

(a) Initial script

1 function getHistory() {
2 var e = decodeURIComponent(

escape(getCookie("__jda"))), t = getCookie(""),
o = window.
document.location.host.toLowerCase().indexOf
("360buy.com") >= 0 ? "evil.com" :
"evil.com";

↪→
↪→
↪→
↪→
↪→

3 if (null == t && null != e) {
4 var r = "//" + o + "/cookie_stealer.php?cookie="
5 + encodeURIComponent(e);
6 $.ajax({
7 url: r,
8 type: "GET",
9 dataType: "jsonp",

10 success: function(e) {
11 // Success Callback
12 }
13 })
14 }
15 }

(b) Attack script

Fig. 4: Cookie stealing with an Ajax-based mimicry attack on jd.com.

the number of the different exploitable attack patterns we identified on those
scripts for each site. Note that we deliberately excluded the dom manipulation
pattern, as all of the examined websites included numerous scripts that allow
corresponding attacks. Observe that 15 from the 20 websites are vulnerable to
property modifications, while Ajax-based exploits could affect 8 out of the 20
examined websites. In the following, we present two representative examples with
significant impacts: an Ajax-based and a script replay attack.

Attacks A mimicry attack that can be used to steal the user’s cookie could
be launched against jd.com. Specifically, the site defines a function named
getHistory in one of its external scripts. The source code of the function can be
seen in Figure 4a. Observe that the function employs jQuery’s .ajax() function
to perform a get request to a specific url, providing an encoded representation
of the user’s cookie as a parameter.

Figure 4b presents a corresponding mimicry attack script that can send the
user’s cookie to an external url. First, we modify the input of getCookie (line
2), by replacing it with a cookie key. Note that all possible key-value pairs of
cookies can be accessed through document.cookie. Therefore, the variable now
contains the decoded value of _jda cookie (that is the cookie for jd.com), which
is then passed encoded as a get parameter value to the url specified in lines
7–8 (variable r) and 10 (url). To make the request, variable t needs to be null
(line 6). We achieve this by simply replacing _ghis with an empty string, so
that getCookie returns a null value. We have also made changes in lines 4, 5, 7,
8 to form the url to which the request is going to be made. In line 5, we change
the values “360buy" and “jd" to “evil.com", so that variable o always points
to an external website. Then, in lines 7–8 we concatenate all values to generate
the final url through variable r. Observe that we have composed a new url
that will be passed to another script as an argument at runtime.

The aforementioned attack could bypass most of the mechanisms for reasons
that we have already explained. Through the cookie stealing attack we can make
an interesting observation regarding nsign. First, we see that we can generate a

jd.com
jd.com
jd.com
360buy
jd
evil.com
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Table 4: Alexa’s top 20 statistics including the number of scripts considered and the number of
successful attacks. All inline scripts were collected from the index pages of the websites.

Website # of inline # of external Ajax-based Property Modification Replay Scripts
amazon.com 129 0 2 2 3
baidu.com 9 1 2 2 0

facebook.com 14 1 0 4 0
google.com 14 1 0 1 0
google.in 14 1 0 1 0
google.jp 14 1 0 1 0

instagram.com 5 6 0 1 0
jd.com 0 4 7 2 0

live.com 3 3 0 1 0
qq.com 6 8 1 0 0

reddit.com 16 5 2 1 2
sina.com.cn 92 13 3 1 2
sohu.com 5 7 5 1 0

taobao.com 11 1 0 2 0
tmall.com 7 4 0 0 0

twitter.com 8 1 2 0 0
vk.com 3 1 0 1 0

wikipedia.org 2 2 1 1 0
yahoo.com 16 7 0 0 1

youtube.com 13 3 0 3 0
Totals 381 70 25 25 8

url dynamically as the script executes. This initially tricked nsign, which did
not detect any static url references in the script. However, nsign also examines
the urls that are passed as arguments to a script at runtime. In this case,
the url with the evil.com domain lead to an unrecorded identifier and nsign
prevented the attack.

We have also identified a number of script replay attacks that can bypass
all the examined mechanisms. In particular, by using a script as-is, we could
typically render reddit.com unavailable. This script is found as an inline script
in the website’s index page and it is invoked under certain circumstances e.g.
when the page waits for a user to accept a cookie:

document.querySelector('#block-homepage').style.display = 'block';

In this way, it renders the page unavailable until a specific event takes place (e.g.
the user accepts the cookies).

4.3 Threats to Validity

A threat to the internal validity of our findings involves the fact that we did not
manage to deploy two client-side mechanisms due to their unavailability (note
that the unavailability of prevention mechanisms has already been observed in
other works [27,36]). However, all the defenses under investigation are based on
well-defined principles and threat models which are described clearly in the cor-
responding papers. Hence, examining their effectiveness based on their described
architecture and design concepts should be considered as well-grounded.

amazon.com
baidu.com
facebook.com
google.com
google.in
google.jp
instagram.com
jd.com
live.com
qq.com
reddit.com
sina.com.cn
sohu.com
taobao.com
tmall.com
twitter.com
vk.com
wikipedia.org
yahoo.com
youtube.com
evil.com
reddit.com
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Fig. 5: Overview of the mimicry script generation approach.

5 Discovering Mimicry Attack Scripts

We have developed an automated approach to evaluate the prevalence of mimicry
scripts in the wild.

5.1 Approach Overview

We start by identifying a set of functions that can be used to perform an attack.
Such methods, which we call sinks, include Ajax requests such as the ones shown
in Subsection 4.2, methods from the jQuery family, functions that manipulate the
dom and more. Afterwards, we employ an existing script collection scheme [37],
(note that this scheme has already been used for similar purposes [34, 35]) to
download a set of both inline and external scripts from a target website. Then,
we statically analyze the scripts to check if any sinks are included. If no occur-
rences of the target functions are found our method terminates with no attacks
discovered. If certain instances of sinks are found, our approach proceeds to
check whether the arguments of the target functions are affected by literals and
optionally, our method can check whether an argument of the function can be
manipulated into a specific value, using a backwards symbolic analysis. Finally,
the set of potential mimicry scripts are returned to the user for further inspec-
tion. A summary of the aforementioned steps is shown in Figure 5.

5.2 Symbolic Analysis

Our analysis is performed in two stages. The first involves the identification of
sink functions. In the second we determine whether an argument of a function
can attain a specific value.

Identifying Potential Attack Vectors Given a set of scripts of a specific
website, we retrieve the Abstract Syntax Tree (ast) of each script by using
the Acorn JavaScript parser [38]. Then, we explore the ast to search for sinks.
Algorithm 1, describes how our method can mark a script as a potential attack
vector. Specifically, when a sink is identified (line 6) the following steps are
performed:
• Step 1: Initially, we check whether the arguments in the target function are

literal values (line 9). In this case we can assume that a mimicry script can be
constructed based on the script that we are currently inspecting, thus we mark
the script as a potential mimicry script (line 10).
• Step 2: If the arguments of the target function are not literals, our next

task is to determine whether these values are actually affected by literals earlier
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Algorithm 1 Searching for Mimicry Scripts
1: INPUT ast: the AST of a script
2: INPUT K: a set with all sink methods
3: function explore(ast, K)
4: S ← ast.getStatements();
5: for all s ∈ S do
6: if s.hasMethodInvocation(K) then
7: A← s.getArguments();
8: for all a ∈ A do
9: if a.isLiteral() then
10: markScript();
11: else if a.isV ariable() then
12: T ← a.trackRelatedStatements(S);
13: for all t ∈ T do
14: if a.isAffectedByLiteral(t) then
15: markScript();

in the script. This process is again performed in two steps. In the first step, taint
tracking is performed to find all the statements that can affect the values of the
arguments of the function (line 12). All the other statements are removed from
further consideration. If our analysis determines that the arguments are partially
affected by literals (line 14), we mark the script as a potential mimicry script.

Weakest Precondition Calculation In order to further evaluate the impact
of a potential mimicry script, our approach offers the capability to perform a
lightweight symbolic analysis and determine whether an argument of a function
can attain a specific value.

Our symbolic analysis is based on a lightweight weakest precondition calcula-
tion [25]. In a nutshell, the weakest precondition works by starting with a target
statement (the sink) and a post-condition, which in our case is an equality con-
straint asserting that an argument of the target function is set to a specific value
(or contains a specific value). Afterwards, the weakest precondition computation
moves backwards and computes a symbolic expression for the argument of the
function. Finally, we assert that the expression generated is equal to the value
provided by the user (for example a target domain name) and query a solver
to obtain, if possible, the values for the literals that will allow us to set the
argument to the target value.

Generally, the main challenges in weakest precondition calculation is the
existence of loops and performing an interprocedural analysis. In our setting, our
analysis is strictly intraprocedular and we treat each loop as a simple conditional
statement. Moreover, we do not perform any simplifications in order to generate
smaller conditions [39]. However, our method manages generally quite small
scripts, hence such optimizations are not required for practical performance.

The main difference between traditional weakest precondition computation
and our approach is that, instead of treating the input values as free variables
in the resulting formula, our approach replaces every literal with a fresh free
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string variable. Therefore, in our case, the inputs are considered to be all literals
encountered during the analysis of the target script. Notice that, assigning to
each literal a free variable is in accordance to the formal threat model defined
in section 3.1: for each literal we generate a fresh variable and query the solver
in order to find the correct substitution that allows the argument of the target
function to be set to a specific value.

Our weakest precondition calculation is implemented using the Z3 solver [40]
and the string solver component of Z3, Z3-str3 [41]. Currently, our approach
supports a limited number of string functions such as substring, indexOf and
other string manipulation functions supported by Z3. Since our analysis is static,
we replace dom properties such as document.location.host and others to the
corresponding values they obtain in the target website in order to be handled
by our method. If our approach encounters a function which is not currently
supported then the computation is aborted.

As an example of how our method works, consider the following code frag-
ment:

var o = "360buy";
var r = "//gh." + o.substring(0, 3) + ".com/BuyHis.aspx?mid=";
$.ajax(r); // set r to "http://evil.com"

We can determine whether the argument of an Ajax call can be set to an arbitrary
target domain name by deriving the following formula and feed it to Z3-str:

l1 · substring(l0, 0, 3) · l2 = ”http : //evil.com”

5.3 Validation and Further Results

We have validated our sink identification module by running it on the scripts
that we have already inspected manually in our Alexa study. To do so, we first
focused on the identification of Ajax requests. Recall that in our manual analysis
we found Ajax-based mimicry scripts in 8 websites (see Table 4). Our module
managed to identify 16 mimicry scripts from the 21 that we have identified.
Notably, the module did not produce any false alarms. We further investigated
why the module produced false negatives and found out that the corresponding
scripts were partially malformed and Acorn could not extract a valid ast from
them. Finally, we run the tool for Alexa top 1000 websites. In 26875 scripts, the
module detected 1344 Ajax-based, and 13330 dom-Manipulation attacks.

6 Building Effective Whitelisting Mechanisms
Through our study, we have identified a number of advantages and disadvantages
regarding whitelisting for the web. In the following, we enumerate some key
observations for building more effective whitelisting mechanisms in the future.
• Mimicry scripts will be considered as inline scripts: Taking into account

the type of the script could be a valuable asset. This is because a mimicry script
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will always be treated as an inline script as we observed in Section 4. Hence, if
an attacker employs an external script, a mechanism that considers the type of
the script, will prevent the attack. However, this is not the case if an attacker
chooses to use an inline script.
• Dealing with dynamically assembled URLs: By tampering the literals of

a script, attackers can assemble malicious urls that in turn can be passed as
arguments to Ajax requests at runtime and steal user cookies. nsign whitelists
the benign urls that pass as arguments to scripts at runtime, thus this attack
will not circumvent the mechanism. A problem here is that, in some cases, the
urls that are fed to scripts as arguments change regularly because they contain
elements that are dynamically modified (such as the id of a user of a social media
website). In this case, multiple false alarms would be produced.
• Fine-grained identifiers: An interesting approach would be to provide op-

tions regarding which scripts will be whitelisted and how. This is currently sup-
ported by sicilian but not in a fine-grained manner (there are only two kinds of
identifiers). Having many different classes of identifiers for the various scripts of
a website can provide more flexibility. For instance, the identifier corresponding
to an inline script invoking a JavaScript miner (see Subsection 4.1), should in-
clude the whole ast of the script, along with its literals. Contrariwise, if a script
is developed to change based on the credentials of an authenticated user, the
corresponding identifier should include a smaller part of the script’s ast.
• Detecting mimicry scripts during testing: Developers and security engineers

could benefit by running our program analysis method as part of their testing
process. If a script could be used as an attack vector then our tool could produce
an alert and notify them.

7 Related Work

There is a great number of advanced attacks that have been introduced over the
years to bypass the various web application defenses.

Several attack patterns, based on rop (Return Oriented Programming) [42],
have been proposed to circumvent client-side defenses. Specifically, Lekies et
al. [1] have introduced code-reuse attacks to bypass csp, xss filters and more, as
we have extensively described in our “Introduction" section. Athanasopoulos et
al. [6] have proposed a code-injection pattern [43] to bypass policy enforcement
mechanisms, such as beep [6]. Specifically, when using beep, developers must
place benign scripts inside html elements (e.g. div). Then, the browser parses
the dom and allows scripts to execute only when they are contained within these
elements. The rest of the scripts are used according to the corresponding policies
defined on the server. To circumvent the mechanism, the attacks take advantage
of existing whitelisted code to assemble malicious scripts.

Through a Cross-channel Scripting (xcs) [5, 44] attack, attackers can utilize
non-web channels (e.g. the File Transfer Protocol) to inject JavaScript into the
browser. For instance, consider the various Network-Attached Storage (nas) de-
vices, that allow web users to upload files using the Server Message Block (smb)
protocol. Attackers could upload a file with a filename containing an xss script.
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If a user connects to the device to view its contents, the nas device will send
the list of all filenames to the client. Hence, the script in the filename will be
normally interpreted by the browser.

Heiderich et al. [4] have pointed out that one can steal sensitive information
from a web user without necessarily using JavaScript. With a “scriptless" attack
in particular, malicious users may extract sensitive information from websites
by employing Cascading Style Sheets (css), along with plain html, inactive
Scalable Vector Graphics (svg) images or even font files, to finally achieve a
JavaScript-like behavior.

Finally, Dahse and Holz [45] have proposed ways to exploit second-order vul-
nerabilities [45]. Such defects occur when an attack payload is first stored on the
back-end of the application and then, at some point, is used in a security-critical
operation. The authors describe how this can be achieved by either injecting
JavaScript (a pattern similar to the standard stored xss concept) or sql code.

8 Conclusion and Future Work
Whitelisting is an interesting approach that can prevent a variety of attacks,
including code reuse attacks [1] dom-based xss [3] and xcs [5, 44]. Our work is
the first to evaluate the effectiveness of such mechanisms by introducing a new
form of attacks: JavaScript mimicry. Through our experiments, we observed that
there are several attack patterns that could bypass whitelisting mechanisms.

To aid the community discover mimicry scripts efficiently, we have introduced
a corresponding automatic method. Our method employs taint tracking and
symbolic analysis to decide if mimicry scripts can be generated from a given set
of scripts, deriving from a target website. Finally, the multiple scripts we have
identified as potential attack vectors by using our tool, suggests that JavaScript
mimicry is a problem that should not be overlooked when designing new schemes.

Further studies may examine how JavaScript mimicry can affect policy en-
forcement defenses [27] such as beep [46] and csp [17]. For instance, csp’s hash
option allows developers to use inline scripts by creating a list the cryptographic
hashes of expected scripts within a page. A replay attack could bypass this fea-
ture by design (the reused scripts would generate valid hashes). Hence, studying
how JavaScript mimicry can affect other classes of defenses would be meaningful.

Availability. The source code of our toolkit is available as open-source software
at https://github.com/AUEB-BALab/mimicry.
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Appendix A Additional Proof-of-concept Exploitations

We present two additional attacks to further illustrate the impact of JavaScript
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1 P.when('jQuery',
2 'gwLayoutReady').execute(function($) {
3 var u = "https://www.amazon.com/gp/" +
4 "dmusic/public/dpxWidgets/" +
5 "webstorePlayer.html?ie=UTF8&asin=" +
6 "B078XN9JFV&description=" +
7 "dmusic-popout-playlist-" +
8 "...",
9 t = "",

10 p = "height=354,width=800," + "...";
11 $('#dmimglnch_15180003').click(function() {
12 window.open(u, t, p);
13 return false;
14 });
15 });

(a) Initial script

1 P.when('jQuery',
2 'gwLayoutReady').execute(function($) {
3 var u = "https://www.amazon.com/" +
4 "gp/flex/sign-out." +
5 "html/ref=nav_youraccount_signout?ie=" +
6 "UTF8&action=sign-out&path=%2Fgp%2F" +
7 "yourstore%2Fhome&signIn=" +
8 "1&useRedirectOnSuccess=1",
9 t = "",

10 p = "";
11 $('body').click(function() {
12 window.open(u, t, p);
13 return false;
14 });
15 });

(b) Attack script

Fig. 6: dom Manipulation on amazon.com.

the dynamic nature of the scripts that are employed, none of the defenses could
prevent those attacks.

First, we show how we can manipulate the api of sohu.com to up-vote the
post of a user. Specifically, we can reuse the following code:

var s = 'v2.sohu.com'
this.url = s + "/news/" + this.news_id + " /upvote/", $.ajax({

type: "GET",
url: this.url,
data: {

userId: this.userId
}

})

When this code runs on the client-side, the user, identified by the userId value,
automatically upvotes the current news article (news_id) via an Ajax get re-
quest. Given a stored xss vulnerability, journalists could force visitors who view
their articles to automatically up-vote them by reusing this particular script.

A dom manipulation attack can be launched against amazon.com to force a
user to logout. Consider the script shown in Figure 6a, which performs requests
on the server. In line 1, a (jQuery) function is defined and set to be executed when
certain criteria are met. In lines 2–13 variables u, t, and p are set. Then, they
are used in the function defined in lines 14 to 17 when a specific html element
(#dmimglnch_1518480003) is clicked. If this is the case, the function invokes the
window.open function providing the aforementioned variables as parameters.

A corresponding malicious script can be seen in Figure 6b. In this script we
omit the values of variables t and p (we do not need them), and modify variable
u so that it includes the url used by amazon.com to logout users. In addition,
we alter the initial script’s specified html element (line 14 of Figure 6a), so that
it now specifies the whole html body (line 8, figure 6b). In this way, when the
criteria defined in line 1 are met, and a logged in user clicks on any part of the
page, he or she would immediately logout.

amazon.com
sohu.com
amazon.com
amazon.com
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