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Modern programming languages promote software reuse via package managers that facilitate the integration
of inter-dependent software libraries. Software reuse comes with the challenge of dependency bloat, which
refers to unneeded and excessive code that is incorporated into a project through reused libraries. The presence
of bloated dependency code exhibits security risks and maintenance costs, increases storage requirements,
and slows down application load times. In this work, we conduct a large-scale, fine-grained analysis for
understanding bloated dependency code in the PyPI ecosystem. Our analysis is the first to focus on different
granularity levels, including bloated dependencies, bloated files, and bloated methods. This allows us to
identify the specific parts of a library that contribute to the bloat. To do so, we analyze the source code of 1,302
popular Python projects and their 3,232 transitive dependencies. For each project, we employ a state-of-the-art
static analyzer and incrementally construct the fine-grained project dependency graph (FPDG), a representation
that captures all inter-project dependencies at method-level.

Our reachability analysis on the FPDG enables the assessment of bloated dependency code in terms of several
aspects, including its prevalence in the PyPI ecosystem, its relation to software vulnerabilities, its root causes,
and developer perception. Our key finding suggests that PyPI exhibits significant resource underutilization:
more than 50% of dependencies are bloated. This rate gets worse when considering bloated dependency code
at a more subtle level, such as bloated files and bloated methods. Our fine-grained analysis also indicates
that there are numerous vulnerabilities that reside in bloated areas of utilized packages (15% of the defects
existing in PyPI). Other major observations suggest that bloated code primarily stems from omissions during
code refactoring processes and that developers are willing to debloat their code: Out of the 36 submitted pull
requests, developers accepted and merged 28, removing a total of 33 bloated dependencies. We believe that
our findings can help researchers and practitioners come up with new debloating techniques and development
practices to detect and avoid bloated code, ensuring that dependency resources are utilized efficiently.

1 INTRODUCTION
Over the past decade, software reuse [Krueger 1992; Mohagheghi and Conradi 2007; Naur and
Randell 1969] has experienced a significant rise. This trend is driven by the growing popularity
of of open-source software and the extensive use of package managers. Open-source software
libraries are hosted in centralized repositories and are made accessible through package managers,
such as Python’s pip, Java’s Maven, or JavaScript’s npm [Cox 2019; Spinellis 2012]. Developers
specify project dependencies in a textual file, allowing package managers to automate the process
of fetching the required library versions from the repositories [Boldi and Gousios 2020]. While
software reuse offers the benefits of reduced development and maintenance costs [Mohagheghi
and Conradi 2007], it also introduces security and reliability risks [Cox 2019; Gkortzis et al. 2019],
or license compatibility issues among dependencies [German et al. 2010; van der Burg et al. 2014].
This study focuses on an emerging challenge originating from code reuse, that is, the presence

of bloated dependency code. Introduced in 2021 by Soto-Valero et al. [2021b], this concept refers
to the incorporation of unused code into a software project via dependencies (reused libraries).
Research indicates that bloated dependencies (1) introduce dependency conflicts [Patra et al. 2018;
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Wang et al. 2020] and increased maintenance effort [Jafari et al. 2022; Soto-Valero et al. 2021b],
(2) are related to vulnerable code [Azad et al. 2023, 2019]. To illustrate the negative effects of
bloated dependency code, consider the case of a Python project named zopefoundation/Zope. This
project declares an unused dependency, which breaks the corresponding build process due to
incompatibility issues with other declared dependencies. To fix this issue, the developers of Zope
simply remove the bloated dependency from their codebase [Gmach 2021].
In spite of its importance, bloated dependency code has only been touched by a few studies.

A handful of them have addressed bloated dependencies in various software ecosystems such as
Maven [Ponta et al. 2021; Soto-Valero et al. 2021a] and Rust’s Cargo [Hejderup et al. 2022], with
others exploring dependency-related issues, including bloated dependencies in Python [Cao et al.
2023] and JavaScript [Jafari et al. 2022]. Surprisingly, all those studies quantify the prevalence of
bloat only at package level (e.g., number of bloated dependencies). This can result in false estimations
regarding bloated dependency code, as the actual code reuse occurs at the level of methods or
functions [Boldi and Gousios 2020]. For example, a programmer might import a certain dependency,
but not actually invoke any of its code. This consideration demands a more fine-grained analysis
for quantifying bloated dependency code.
In this work, we perform the first fine-grained inter-project dependency analysis of bloated

dependency code in Python projects. Python, being one of the most popular programming lan-
guages [Cosentino et al. 2017; GitHub 2023], has experienced a 24% growth in 2023 according to
GitHub’s annual statistics [GitHub 2023]. Additionally, Python Package Index (PyPI) facilitates
one of the largest software ecosystems, hosting more than 450k projects and their 9M Python re-
leases. The extensive software reuse in PyPI emphasizes the importance of studying and addressing
dependency bloat in this ecosystem. Our study seeks answers to the following research questions.

RQ1 (Prevalence) How prevalent is bloated dependency code in the PyPI ecosystem?What
are the qualitative characteristics of bloated dependency code at different granularities (i.e.,
package, file, method)? (Section 3.1)

RQ2 (Security) What is the relation between bloated dependency code and software vul-
nerabilities? Do vulnerabilities reside in bloated code regions? (Section 3.2)

RQ3 (Causes)What are themain causes of bloated PyPI dependencies?What is the frequency
of these causes? (Section 3.3)

RQ4 (Developer perception) To what extent are developers willing to remove bloated PyPI
dependencies? Does the cause of bloated code affect developer decision and responsiveness?
(Section 3.4)

To answer these questions, we design and implement a large scale, fine-grained analysis on
popular Python projects. We select 1,302 GitHub Python projects from a well-established dataset [Al-
fadel M 2020]. For each project in our dataset, we build the fine-grained project dependency graph
(FPDG), which captures the entire dependency network of a project at the level of methods. To
do so, we fetch the source code of every project along with the source code of its dependencies
(including direct and transitive ones). Following the approach of Keshani [2021] for practical and
large-scale analyses, we then employ PyCG [Salis et al. 2021], the state-of-the-art static analyzer
for Python, to construct the (partial) call graph of every Python project and dependency. Through
a process called stitching, we merge all partial call graphs and derive the final FPDG. Stitching
essentially connects an external method in a partial call graph (client code) with its counterpart
found in the dependent call graph (library code).

Running standard reachability analyses on the resulting FPDGs allows the assessment of bloated
dependency code. We evaluate the identified bloated code in terms of several aspects, including its
prevalence, its relation to software vulnerabilities, its main causes, and developer perception.
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Fig. 1. The overview of our approach for studying bloated code in PyPI ecosystem.

Contributions: Our work makes the following contributions.
• We conduct the first large-scale analysis for constructing fine-grained dependency networks

in the PyPI ecosystem.We provide a corresponding reference dataset containing dependency
networks that come from 1,302 Python projects and 3,232 PyPI releases (Section 2).
• Wequantify bloat in the PyPI ecosystem, and provide a thorough assessment of its prevalence,
its security impact, its main causes, and developer perception (Section 3).
• We enumerate the implications of our findings, and discuss potential future directions in
software dependency management (Section 4).

Summary of findings: We find that the PyPI ecosystem exhibits severe dependency under-
utilization (RQ1). On average, a Python project consists of ten bloated dependencies. Bloated
dependency code becomes more prevalent when measuring bloat at the level of files or methods.
In particular, 87% of the dependency source files and 95% of the external methods in a Python
project are bloated. Further, our fine-grained analysis highlights the security concerns related to
bloated dependency code (RQ2): We identify several vulnerabilities in bloated areas of utilized
packages (15% of the total defects in PyPI). Currently there are no attack techniques to directly
exploit such defects (i.e., application vulnerabilities have to reside in reachable parts of the code
to be exploited [Azad et al. 2023]). However, vulnerabilities that exist in bloated code can act as
“time-bombs" which in turn can get activated after a slight code change. Furthermore, bloated
dependencies are mainly introduced by pervasive changes in developers’ code base (e.g., feature
removals) (RQ3). Finally, developers are willing to remove bloated dependencies, especially when
they are aware of their main causes (RQ4).

Implications: Through our analysis, we directly addressed bloated dependencies by submitting
pull requests, targeting 42 cases across 36 Python projects. Our efforts have already led to the
successful debloating of 33 dependencies in 28 projects, underlining the impact of our work. We
believe that our study can help researchers and practitioners to build appropriate linters and
automated refactoring tools to detect and eliminate bloated dependency code in Python projects.

2 METHODOLOGY
Figure 1 summarizes our approach for studying bloated code within the PyPI ecosystem. As a
starting point ( 1○), we select a set of popular and well-established Python projects based on a
specific criteria (Section 2.2). Then, for each selected project, we resolve its direct and transitive
dependencies (Section 2.2), and download the source code of each dependency for further analysis.

The data analysis step ( 2○) begins with the construction of the partial (stand-alone) call graph of
every individual project and dependency using the state-of-the-art static analysis tool PyCG [Salis
et al. 2021]. Next, we merge all partial call graphs through a process we call stitching (Section 2.3.2).
Stitching connects the external calls of each partial call graph with the corresponding nodes that
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appear in the call graphs of the callee dependencies. We call the resulting (stitched) call graph,
the fine-grained project dependency graph (FPDG) of a project. The FPDG captures the caller-callee
relationships within a project’s entire dependency tree. Following the construction of the FPDG, we
perform a reachability analysis to identify the packages, files, or methods that are accessible within
each application. All unreachable methods are marked as bloated, and serve the basis for detecting
bloated files and bloated dependencies according to a set of formal definitions (Section 2.1).

In addition to the quantitative analysis, we also perform a qualitative analysis ( 3○) on our bloated
code results. The goal of our qualitative analysis is twofold. First, we identify the root causes of code
bloat. Second, we map previously-reported Python vulnerabilities taken from GitHub’s advisory
database [gad 2023] to the individual methods these vulnerabilities come from. This allows us to
determine whether these vulnerabilities are associated with bloated dependency code.

2.1 Definition of Bloated Dependency Code
Before we describe in detail each step of our approach, we define (1) our representation for capturing
inter-project dependencies, and (2) bloated dependency code.

Fine-Grained Project Dependency Graph: A fine-grained project dependency graph (FPDG)
captures the method-level relationships of a Python project across its different dependencies.
Formally, we define an FPDG as 𝐹𝑃𝐷𝐺 = (𝑉 , 𝐸), where a node 𝑣 ∈ 𝑉 = Method corre-
sponds to a method defined in a project or a dependent PyPI release (external dependency).

1 class A:

2 def m1(x):

3 def m2(y):

4 pass

5 pass

Listing 1. A Python
program.

Each method ⟨𝑚,𝑛⟩ ∈ Method is described by a tuple, where𝑚 is the method
name and 𝑛 is the namespace where the method is defined. For example,
consider a Python module file named mymodule.py, as illustrated in Listing 1:
The namespace of method m1 is mymodule.A, while the namespace of method
m2 is mymodule.A.m1. Since Python does not support method overloading
(i.e., having multiple methods of the same name within the same scope),
the combination of namespaces and method names is sufficient to uniquely
identify each method.
Finally, an edge 𝑒 ∈ 𝐸 ⊆ 𝑉 ×𝑉 in an FPDG represents a caller-callee relationship. For example,

the edge (𝑚1,𝑚2) indicates that there is a direct method call from method𝑚1 to method𝑚2. A
complete example of a Python project, and its corresponding FPDG is shown in Figure 2.
Bloated dependency code: We focus on unused code originating from third-party libraries

integrated into a Python’s application ecosystem. This unused code stems from two major sources:
(1) direct dependencies, explicitly declared by the developers, or (2) transitive dependencies, auto-
matically resolved by the package manager (e.g., pip). We now formalize the notion of software
bloat in project dependencies at different granularity levels.

In our setting, we represent each project as a triple of the form ⟨𝑛, 𝐹, 𝐷⟩ ∈ Project = ProjectName×
P(File)×P(Project). Essentially, a project consists of its name, a set of source files, and another set of
its direct dependencies. Each file is a pair ⟨𝑓 , 𝑀⟩ ∈ File = FileName×P(Method). The first element of
the pair corresponds to the file name, while the second element stands for the set of methods defined
in the source file. For what follows, the function Paths(𝑔, 𝑠, 𝑡) returns the set of paths between the
source node 𝑠 and the target node 𝑡 in graph 𝑔. Function Methods : Project −→ P(Methods) gives
the set of all methods defined in a project 𝑝 ∈ Project as follows:

Methods(⟨𝑛, 𝐹, 𝐷⟩) =
⋃

(𝑓 ,𝑀 ) ∈𝐹
𝑀

Function Deps : Project −→ (Project) gives all direct and transitive dependencies of a project:

Deps(⟨𝑛, 𝐹, 𝐷⟩) = 𝐷 ∪ (
⋃
𝑑∈𝐷

Deps(𝑑))
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Definition 2.1 (Bloated Method). Consider a project 𝑝 = (𝑛, 𝐹, 𝐷) ∈ Project, an FPDG 𝑔, and a
project dependency 𝑑 ∈ Deps(𝑝). A method𝑚 ∈ Methods(𝑑) is considered a bloated method (BM),
if ∀𝑚′ ∈ Methods(𝑝). Paths(𝑔,𝑚′,𝑚) = ∅.

This definition says that a method 𝑚 of a dependency is marked as bloated, when 𝑚 is not
reachable by any method defined in the current project.

Definition 2.2 (Bloated File). Consider a project 𝑝 = (𝑛, 𝐹, 𝐷) ∈ Project, an FPDG 𝑔, and a project
dependency (𝑛′, 𝐹 ′, 𝐷 ′) ∈ Deps(𝑝). A file (𝑓 , 𝑀) ∈ 𝐹 ′ is considered a bloated file (BF), when
∀𝑚 ∈ 𝑀. 𝑚 is a bloated method.

In essence, a source file 𝑓 of a dependency is considered bloated when none of the methods
defined in 𝑓 are used by the current project.

Definition 2.3 (Bloated Dependency). Consider a project 𝑝 = (𝑛, 𝐹, 𝐷) ∈ Project and an FPDG 𝑔. A
dependency (𝑛′, 𝐹 ′, 𝐷 ′) ∈ Deps(𝑝) is considered a bloated dependency (BD), when ∀𝑓 ∈ 𝐹 ′ . 𝑓 is a
bloated file.

According to the above definition, a dependency 𝑑 is marked as bloated, when the current project
does not invoke any code included in the source files of 𝑑 .

Relation of bloated dependency code with Python’s import statements: Python employs
two different styles of importing code, summarized as follows.
• import x: Imports module x entirely, allowing access to its elements (e.g., functions) as x.f.
• from x import a, b: Imports specific elements (e.g., a and b) from module x, making only
those elements directly accessible.

Both of these styles can introduce the following instances of dependency underutilisation: (1)
unloaded dependency code, which is part of a dependency package (existing in the file system),
but never imported or loaded at runtime, and (2) unused imports which correspond to code that is
imported and loaded into the application but remains unused. According to our formal definitions,
a piece of dependency code is considered bloated when it is not necessary for the correct execution
of an application that depends on it. Our formal definitions essentially treat the two instances
as indistinguishable, as we focus on unused parts of both loaded and unloaded dependency code.
Notably, our definition on bloated dependency code is consistent with other empirical studies [Soto-
Valero et al. 2021a,b].

Other dependency-related issues: In addition to bloated dependency code, there are other
kinds of dependency-related issues, such as circular dependencies [Melton and Tempero 2007;
Oyetoyan et al. 2015; Suryanarayana et al. 2014]. Although our FPDG can capture cycles among
caller-callee relationships, indicating mutually recursive functions, it cannot effectively determine
whether there are cycles corresponding to mutually dependent modules and dependencies. This
is mainly because of the complexity introduced by higher-order functions, where functions are
passed as arguments to external code, and subsequently invoked by the external code. In this
context, a caller module is not necessarily the one that has imported the callee function. Circular
dependencies fall outside the scope of our study as they represent a different category of issues.
Their detection would require additional metadata in the FPDG to distinguish whether a callee
method is directly imported by the caller module or injected by an external module.

2.2 Project Selection and Dependency Resolution
Selecting Python projects: Our study focuses on the impact of bloated dependency code from
the perspective of an end-user. Thus, our dataset contains actual user applications. We chose
to use a dataset of Python GitHub projects provided by the work of Alfadel et al. [2023]. The
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Table 1. The evolution of our initial dataset [Alfadel M 2020] after applying each step of our data collection and
data analysis approach. The final dataset consists of 1,302 Python GitHub projects. We have resolved 21,787
dependencies in total corresponding to 3,232 unique PyPI releases. Each GitHub project contains 17 depen-
dencies on average.

Step Operation Total GitHub projects Resolved deps PyPI releases Avg. deps

Data Collection
Initial dataset of Python GitHub projects 2,224 - - -
Filtering inaccessible projects 2,215 - - -
Dependency resolution 1,644 34,821 5,611 21

Data Analysis
Partial call graph construction 1,302 21,787 3,232 17
Call graph stitching 1,302 21,787 3,232 17
Reachability analysis 1,302 21,787 3,232 17

dataset [Alfadel M 2020] includes 2,224 Python projects, all of which use PyPI for their dependency
management. Each project in the dataset has at least ten stars, indicating community interest [Dabic
et al. 2021]. In addition, all projects (1) have a minimum of 100 commits, (2) involve at least two
contributors, (3) are original (e.g not forked), and (4) demonstrate recent activity, with the latest
commit pushed after June 1, 2021. Notably, our selection criteria are consistent with standards
utilized in other studies [Abdalkareem et al. 2020; Kalliamvakou et al. 2014].
We have been able to successfully download the source code of all GitHub projects, with the

exception of nine projects that have been either deleted or (potentially) set to private on GitHub.
Consequently, we have access to the source code of 2,215 GitHub projects (Table 1).

Resolving project dependencies: For each downloaded project, we look for standardized con-
figuration files [Cannon et al. 2016; Python Packaging Authority 2023] that control the installation of
Python dependencies. This includes the traditional setup scripts (setup.py), the pyproject.toml
files, or the requirements.txt file. When we detect at least one of the three files, we employ pip,
which is the official package installer for Python, to install dependencies in a fresh and isolated
environment. To do so, for every individual GitHub project, we run pip install in a new virtual
environment created through the virtualenv utility.
Based on the aforementioned steps, we successfully resolve a set of dependencies and obtain

their corresponding releases (uniquely identified by the package_name:package_version pattern)
for 1,644 out of the 2,215 projects. The failed scenarios (571 in total) can be attributed to two
main factors. First, some projects do not contain any configuration files for dependency resolution.
Therefore, we are unable to accurately determine the corresponding dependencies. Second, during
the installation process, we have encountered some unexpected errors due to either dependency
conflicts or missing dependencies that are not explicitly specified. Projects without resolved de-
pendencies, are excluded from our analysis. As a final step, we download the source code of these
releases using the pip download command.

2.3 Construction of Fine-Grained Project Dependency Graph
Our dependency graph generation method is inspired by the practical approach proposed by Ke-
shani [2021]. This method addresses the scalability challenges of ecosystem-wide analyses by
generating call graphs in an incremental manner. Specifically, unlike other traditional methods that
employ whole-program analyses, the method of Keshani [2021] involves the construction of partial
call graphs for individual projects or dependencies (Section 2.3.1). Through a stitching process
(Section 2.3.2), these partial call graphs are combined together to derive a universal call graph, that
is, FPDG. (Section 2.1). We now present the technical details behind the construction of the FPDG.

2.3.1 Partial Call Graph Construction. The process of constructing an FPDG begins with the
generation of partial call graphs for every Python project and its dependencies. To do so, we use
PyCG [Salis et al. 2021], the state-of-the-art static analyzer for Python. The input of PyCG is a set
of Python source files, while its output is a call graph represented in a JSON format. Given a Python
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1 # a.py (client)

2 from b import m2

3
4 def main():

5 m1()

6 m2()

7 def m1():

8 pass

9
10 # b.py (external dependency)

11 from c import m4

12
13 def m2():

14 m4()

15 def m3():

16 pass

(a) Python program

Call graph of b.py (external dependency)

Call graph of a.py (client)

b.m2 c.m4 (ext)

b.m3

a.main

a.m1

b.m2 (ext)

(b) Partial call graphs

a.main

a.m1 b.m2

c.m4

b.m3

... ...

(c) FPDG graph

Fig. 2. An example demonstrating a Python program with its direct and transitive dependencies (a), the
corresponding partial call graphs (b), the resulting fine-grained project dependency graph (c). A gray node in
a partial call graph represents an external method whose definition can be found in the dependency.

Algorithm 1: Stitching
1 fun stitch(callGraphs)=
2 g← ∅
3 for cg ∈ callGraphs do
4 for 𝑣 ∈ nodes(cg) do
5 addNode(𝑔, 𝑣)
6 for (𝑠, 𝑡 ) ∈ edges(cg) do
7 if isExternal(t) then
8 𝑡 ← resolveExternalNode(t)
9 if 𝑡 ≠ nil then addEdge(𝑔, 𝑠, 𝑡 )

10 return 𝑔

Algorithm 2:Method resolution
1 fun resolveExternalNode(𝑡)=
2 (𝑑, cg) ← getDependencyAndCallGraph(t)
3 if 𝑡 ∈ cg then return 𝑡

4 Install dep 𝑑 in a fresh environment
5 obj← getFunctionObject(t)
6 if obj = None then continue
7 mod_name← inspect.getModule(obj)
8 (𝑛,𝑚) ← obj.__qualname__.rsplit(".", 1)
9 𝑛 ← mod_name + "." + n

10 return (𝑛,𝑚)

project 𝑝 = ⟨𝑛, 𝐹, 𝐷⟩ ∈ Project, we feed the set of source files 𝐹 to PyCG and store the resulting call
graph. Then, we do the same for the source code of every individual dependency of 𝑝 , that is 𝑑 ∈ 𝐷 .

PyCG has succeeded in generating the partial call graph for 1,502 out of the 1,644 GitHub projects
included in our dataset. The remaining 142 projects are excluded from our analysis because they are
written in Python 2, which PyCG does not support. The 1,502 projects processed by PyCG include
a total of 4,968 unique PyPI releases as dependencies. PyCG managed to generate the partial call
graph for 4,789 releases, while the remaining 175 releases are written in Python 2.

Based on the PyCG results, we perform an extra filtering step to identify all projects and releases
that depend on at least one release for which PyCG produces no results. This leads to the exclusion
of 196 additional Python projects from our dataset. This filtering procedure is an important step, as
it filters out projects with incomplete analysis results. Incomplete analysis results can introduce a
substantial number of false positives and false negatives in the corresponding call graphs. Overall,
we were able to build the partial call graph for 1,302 projects and 3,232 PyPI releases. On average,
each project contains 17 resolved dependencies (see Table 1).
Example: Figure 2a shows an example Python module named a that invokes a number of

methods that are both internal and external. Figure 2b demonstrates the partial call graphs of
module a and its dependency. External methods are denoted with gray nodes. External methods
have no outgoing edges, because the source code of these methods is not available to PyCG.
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1 # a.py (client code)

2 from ext import B

3 def main():

4 obj = B()

5 obj.m()

6 ...

7 # ext/module.py

8 class B:

9 def m():

10 pass

11 class C:

12 def m():

13 pass

14 # ext/__init__.py

15 from ext.module import *

Call graph of dependency 'ext'

Call graph of client code

ext.module.C.m

ext.module.B.m

a.main ext.B.m (ext)

a.main ext.module.B.m

ext.module.C.m

Fig. 3. An example Python programwhere the access path of an external method is different from its definition
namespace (see external method ext.module.B.m). Our stitching process matches the access path at the call
site (ext.B.m) with the corresponding definition node in the dependent call graph (ext.module.B.m).

2.3.2 Stitching of Call Graphs. Having generated the partial call graph of every project and
dependency, we develop a method, which we call stitching, for combining individual partial call
graphs into an FPDG. The key idea behind our method is to merge a list of call graphs by connecting
an external node (method) with its counterpart found in the partial call graph of the dependency.

Our stitching procedure accepts a list of partial call graphs as input and follows the steps outlined
in Algorithm 1. Initially, the algorithm adds every orphan node (i.e., a node with no incoming or
outgoing edges) of a partial call graph into the FPDG (lines 4, 5). Next, for every edge (𝑠, 𝑡) in a
given call graph, the algorithm checks whether the edge reaches an external node (method). If this
is the case, the algorithm resolves the target method 𝑡 based on the call graph of the dependency
where method 𝑡 is defined (see method resolveExternalNode, line 8). When this resolution
process ends, the algorithm creates a new edge in the FPDG consisting of source node 𝑠 and the
resolved method 𝑡 . Once the algorithm iterates over all the given call graphs, it returns graph 𝑔

(line 10), which stands for the fine-grained project dependency graph of the project.
Example: An example of the stitching procedure is shown on Figure 2b and Figure 2c. Notice

how the internal method b.m2 of the first call graph (dependency b) is matched against the external
method b.m2 (ext) of the second call graph (project a). The algorithm merges these nodes and
adds all the incoming edges of b.m2 (ext) to node b.m2 (see Figure 2c).

Resolving external nodes: External calls represent interactions between a node in the current
graph and a node in another partial call graph. However, our stitching procedure faces two major
challenges associated with the resolution of external calls. First, the official distribution name of
a package might be different from its import name (Challenge 1). For example, the PyPI package
beautifulsoup4 is imported as bs4 in the code. The second challenge (Challenge 2) lies in correctly
associating method identifiers with their corresponding internal nodes in the dependent partial call
graphs. This is because of the Python’s import system, where an external callable can be imported
and accessed in multiple ways, depending on the contents of Python __init__.py files. Notably,
an __init__.py file contains code that is executed once a specific module is imported.
To illustrate this, consider the code fragment in Figure 3. The code imports a class B from an

external dependency named ext. In turn, it creates an object of B and calls the instance method m
(lines 4, 5). At use site, the method m is accessed through the namespace (ext.B.m), which is different
from the namespace where the method is defined in the external dependency (i.e., ext.module.B.m,
line 9). This is because of the contents of file __init__.py, which imports all contents of module
ext.module.py beforehand (line 15). Since PyCG does not have access to the source code of the
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Table 2. Statistics on the resolved and unresolved external calls during our stitching process.

External Calls Aggregate count Proportion of total Average (per project) Median (per project)
Resolved 7,799,929 96.7% 5,990 144.5
Unresolved 260,249 3.2% 199 11.5

dependency ext, it becomes impossible for us to determine the namespace where method m is
actually defined.
To address the aforementioned challenges, the function resolveExternalNode (Algorithm 2)

takes a method node 𝑡 and works as follows. First, the function retrieves the dependency and the
call graph associated with the external call to 𝑡 . To do so, the function consults the top_level.txt
file that accompanies every downloaded PyPI package [Python Packaging Authority 2024]. This
file outlines the top-level directories or modules included in every PyPI package. Based on this
information, we maintain a dictionary that maps every module to the package it belongs to, thus
addressing Challenge 1. For example, when the algorithm encounters an external call of the form
bs4.parse_html, the algorithm is able to map the module bs4 to the dependency beautifulsoup4,
and retrieve its corresponding partial call graph 𝑐𝑔 (Algorithm 2, line 1).
After retrieving the dependency 𝑑 and the call graph cg associated with node 𝑡 , the algorithm

tries to match 𝑡 with a corresponding internal node found in the dependent call graph cg (Challenge
2). We illustrate this process using the example of Figure 3. In this example, we want to resolve node
ext.B.m found in the call graph of the client module a.py. The algorithm first checks whether this
node appears in the call graph of the dependency (Algorithm 2, line 2). Since this is not the case,
the algorithm employs a dynamic method to precisely identify the namespace where the callee
method m is defined based on its access path.

The dynamic approach first installs the dependency 𝑑 in a clean environment. Then, it leverages
Python’s metaprogramming features to analyze elements within the module or its class objects. For
example, consider the access path ext.B.m. The algorithm first dynamically imports the module
ext via the __import__ functionality. Then, it recursively retrieves the object of every element
included in the access path until it reaches the object obj that corresponds to the target method m
(Algorithm 2, line 5). Upon retrieving the method object obj, our method uses Python’s inspect
module (Algorithm 2, lines 7, 8), which offers an API for getting (1) the module name where
this method is defined (i.e., ext.module), and (2) the fully qualified name of the method (i.e.,
B.m). Combining the two leads to the resolved node as found in the dependent call graph (i.e.,
ext.module.B.m). When resolveExternalNode returns, our stitching procedure finally proceeds
with the creation of the FPDG as explained in Algorithm 1.

Discussion on external call resolution: In the stitching process, we use a dynamic method
to resolve external calls, which by construction, does not yield false positives. It precisely iden-
tifies the namespace where a callee method is defined in a certain dependency, using Python’s
metaprogramming features. However, there are cases where our resolution method fails to resolve
a specific call. This is because of callee methods defined in non-Python source files. For example,
many methods included in the numpy package (e.g., np.asarray) are written in C. To address such
scenarios, a cross-language analysis is required to build both the partial call graphs and the FPDG.

Table 2 presents statistics from our method resolution process. Roughly 3% of the unique external
calls remain unresolved. Upon examining a random sample of 100 unresolved cases, we find that
all these instances are due to callee functions defined in languages other than Python.

As a final note, to avoid polluting the namespace with dynamic imports, Algorithm 2 runs on a
separate system process.
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2.3.3 Reachability Analysis. Once we generate the FPDG for every project, we perform a standard
reachability analysis through a Breadth-First Search (BFS) algorithm to compute the set of reachable
methods in every project dependency. These reachable methods are directly or transitively called by
the project. Based on the results of our reachability analysis, we identify the set of bloated methods,
bloated files, and bloated dependencies according to definitions 2.1, 2.2, and 2.1 respectively.

2.4 Analyzing Reachability Results
We now explain how we analyze our reachability results to answer each of our research questions.

RQ1: Prevalence of software bloat: To quantify the prevalence of code bloat (RQ1), we
measure the number and the size (in terms of lines of code — LoC) of bloated methods, bloated files,
and bloated dependencies respectively. For each analyzed source file and method, PyCG provides
metadata, such as their code size. We use this information to measure the code size of each identified
bloated method and file. Note that our method-level assessment only examines code within the
scope of methods, whereas file-level analysis includes all lines in a file, including the ones outside
the scope of methods (e.g., global variables). Finally, for bloated dependencies, we aggregate the
size of every enclosing bloated file.
RQ2: Relation between software bloat and software vulnerbilities: We examine the

GitHub Advisory Database [gad 2023] and collect all reviewed vulnerabilities reported on PyPI
packages. We exclude all vulnerabilities marked with the “withdrawn” label, which indicates that
the vulnerability is duplicate or invalid. Through this process, we have collected 1,930 unique PyPI
vulnerabilities. Next, for each of the GitHub advisories we extract the version constraints of the
affected PyPI packages and match them against the package versions of our dataset. Specifically, we
mark a package version as vulnerable if it falls within an advisory’s affected range. In this manner,
we identify 76 vulnerable PyPI releases in our dataset. We then leverage our reachability analysis
findings to detect how many GitHub projects within our dataset depend on at least one of these
vulnerable releases. To make our analysis more fine-grained, we take a step further and perform
a vulnerability mapping. That is, for each vulnerable dependency, we manually identify which
method contains the vulnerability described in the corresponding CVE. To do so, we extract the
affected functions or classes from the CVE descriptions and then we look for their implementation.
If the CVE description does not include such information, we take one more step and examine the
patching commits to pinpoint the affected functions or classes. By using our reachability analysis
we are able to check if a vulnerability resides in a bloated method (Definition 2.1).

RQ3: Root cause analysis: In this question, we aim to study the main causes of bloated
dependencies. Since the manual analysis of each bloated dependency is costly and challenging (see
below), it is infeasible for us to study each bloated dependency in the population. Therefore, we take
a random sample of 50 bloated dependencies that stem from the outcome of our reachability analysis.
All the selected dependencies are direct dependencies, meaning the they are explicitly declared in
the configuration files (e.g., setup.py) of a project. We chose to study the root cause of bloated
direct dependencies because developers have typically a better control over direct dependencies.
Therefore, it is easier for us to explain the causes of bloated code.

For each bloated dependency, we proceed as follows. We use the git blame command to
identify the commit where this dependency was introduced in the config files (e.g., setup.py,
requirements.txt). We then examine the message of this introductory commit, and if the commit
is linked with a pull request (PR), we also inspect the corresponding PR comments. Examining
commit messages and developers’ discussion helps us uncover the reasons why the dependency
is introduced. In the same manner, we employ git to find the commit where developers stopped
using the dependency, and examine possible reasons for this decision.
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Note that a bloated dependency might have been already used and removed for different purposes.
This can be relevant to the root cause. To investigate the full history of the dependency, we extend
our analysis beyond the configuration files. Specifically, we conduct GitHub searches to identify
corresponding imports and examine relevant code sections in the project’s source files throughout
its history. For each identified reference, we repeat our git-based analysis to track both the
introduction and removal of the bloated dependency. In the context of our root cause analysis,
one author independently assigns every bloated dependency to a root cause category. The final
categorization has been validated by an additional researcher.
RQ4: Developer perception on software bloat: We have provided fixes for 42 out of

the 50 bloated dependencies for which we have performed root cause analysis (see RQ3).

Fig. 4. Example of a pull request body sent to the
GitHub project materialsproject/fireworks.

We did not submit any pull request for eight
out of the 50 bloated dependencies, because al-
though they are unused, these dependencies
constrain the resolved versions of some other
transitive dependencies included in the project.
Developers employ this pattern to ensure com-
patibility with an older library version, or avoid
a vulnerable version (see Section 3.3 for more
details). Based on the insights from our root
cause analysis (RQ3), we design PRs containing
the following elements: (1) a summary section,
(2) a rationale section, (3) a list of changes in
the project’s source files, and (4) the impact and
expected outcome of removing bloated depen-
dencies. Notably, the rationale section of each
PR is crucial, as it details the historical context
and specific reasons behind the introduction
and removal of the bloated dependency. This context is backed by data from our RQ3 analysis.
Figure 4 shows an example PR of removing the bloated dependency to package six on project

materialsproject/fireworks. The PR demonstrates how our root cause analysis informs and enriches
the PR content. For example, the rationale section cites three specific commits and one PR, each of
those affect the bloated dependency six. As we will see in Section 3.4, our detailed PRs significantly
enhance the likelihood of developer acceptance and action. Based on our provided fixes and cause
insights, developers respond to our pull requests. We then examine their feedback.

3 RESULTS
3.1 RQ1: How prevalent is bloated dependency code in the PyPI ecosystem?
Our reachability analysis leverages our definitions on bloated dependency code (Section 2.1) and
identifies the set of bloated: dependencies, files, and methods. At each granularity level, we compute
(1) the number of bloated entities (e.g., files, methods), and (2) the size of bloated entities in terms of
LoC. Figure 5 presents the quantitative characteristics of bloated dependency code. The red marker
in each box plot represents the mean of the distribution.
Package level: We observe that more than half of the dependencies (51%) in a typical PyPI

project are bloated. On average, a Python project contains ten bloated dependencies. Furthermore,
we see varied dependency usage practices: for 25% of the examined projects, at most 33% of project
dependencies are bloated. However, for another 25% of the studied projects, this ratio exceeds 69%.
Such a high ratio could be attributed to several factors including: (1) developers declaring unused
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Fig. 5. The distribution of bloat metrics per granular-
ity. Each entry indicates the percentage of bloated
entities (e.g., files, methods), and the size of bloated
dependency code compared to the overall LoC.
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Fig. 6. The distribution of bloat metrics per vulner-
ability exposure. Each entry indicates the relation-
ship between a vulnerable release, and a project that
uses it. For example, 82% of the files in an inactive
vulnerable release are bloated.

direct dependencies, or (2) projects using only a subset of a direct dependency’s functionalities,
leading to bloated transitive dependencies.
Regarding lines of code, 34% of the dependency code is bloated, on average. This suggests that

while many dependencies might be unused, their code contribution is not as extensive. However,
in sheer volume, an average project in our dataset still carries a significant number of bloated lines
of code, that is, 98,097 LoC, on average. However, there are still projects in our dataset that diverge
from the aforementioned trend. Specifically, approximately 10% (142 projects) have optimally
managed dependencies with no bloat. On the other hand, 109 projects (∼8%) do not use any of their
declared dependencies, indicating potential areas for better dependency management.

File level: Moving to bloated files (Figure 5), on average, 87% of the dependency source files are
bloated. A Python project contains on average 688 bloated files. Regarding the size of these bloated
files, the bloated code consists of 243,156 LoC, on average. Worse, Figure 5 suggests that more
than half of the projects have their dependency code as bloated, implying that less than 20% of
the source files from dependencies are actively used. This emphasizes that even within seemingly
used dependencies, a substantial amount of code is unused. This uncovers an additional layer of
software bloat that goes beyond bloated packages. Therefore, debloating techniques that are less
granular than method-level removal, such as file-level removal, can still effectively reduce bloat.

Method level: At the method level, our measurements exhibit an even more significant increase
of dependency code bloat. Specifically, within a Python project, 95% of its external methods (i.e.,
10,618 methods) are bloated, on average. Considering the size of these external methods, we find a
similar picture: 93% of the dependency code within an application is bloated. This translates to
185,052 lines of bloated code per project.

Direct vs. transitive dependencies: For completeness, we have also examined the degree to
which direct dependencies contribute to the bloat compared to transitive dependencies. Figure 7
presents the distribution of dependency usage statuses across different granularities. In particular,
at the package level, it seems that the bloated dependency code mainly stems from transitive
dependencies, as more than half of the project dependencies (53%) are transitive and unused.
However, when examining LoC, we see that only one quarter (24.4%) of the overall project size
is bloated because of unused transitive dependencies. As granularity refines to file and method
levels, an overwhelming majority of dependency code is unused. Interestingly, direct and transitive
dependencies contribute almost equally to this software bloat.
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Dependency usage
Direct bloated Transitive bloated Direct used Transitive used

Fig. 7. The distribution of the usage status of dependencies, dependency files, and dependency methods,
along with their size in LoC, as aggregated from our dataset.

Overall, as we make our analysis more fine-grained (i.e., from dependencies to files and then
to methods), we observe that bloat becomes more prevalent: nearly half of the dependencies in a
typical Python project are bloated. The amount of bloated code gets worse at the file and method
levels. Our fine-grained analysis helps us uncover which specific code parts contribute to the bloat,
and allows for targeted improvements. For example, understanding which specific dependency
code is bloated enables developers to refactor or rewrite their code more efficiently.

3.2 RQ2: What is the relation between bloated dependency code and software
vulnerabilities?

In this research question, we explore the relation between bloated dependency code and software
vulnerabilities shipped through PyPI releases. Our dataset includes 76 package releases that contain
known vulnerabilities. Our reachability analysis results indicate that out of the 1,302 Python projects
of our dataset, 595 projects depend on at least one vulnerable release. In total, we have 816 unique
pairs consisting of a project and a vulnerable package release.
Usage patterns: Figure 8 shows the usage patterns of the vulnerable packages across the 595

projects. In nearly three quarters of the cases (606/816), a project depends on a vulnerable package
that it does not actually use. Therefore, package-level debloating alone, although less granular,
could still effectively eliminate the number of dependencies to vulnerable code.

Furthermore, we discover a significant number of instances where a project imports and invokes
a vulnerable package, but the specific vulnerable function or class within the release remains unused.
This accounts for the 15% (122 out of 816) of cases (see “bloated method in used release”). Notably,
among these 122 inactive exposures, 29 of them (23%) appear in non-bloated files. Developers should
stay alert for such “time-bombs“, because a seemingly innocuous code change (e.g., replacing
a method call with another one) in the project could trigger the execution of vulnerable code.
Automatically removing those critical vulnerabilities from a project’s code base demands a more
fine-grained debloating approach.

Vulnerabilities located within non-Python dependency files appear in 7.5% (62/816) of our project-
vulnerable release pairs. Given our Python-centric methodology, the invocation status of such
defects remains uncertain. Yet, their prevalence within the PyPI ecosystem suggests the necessity
for broader security evaluations that consider multiple languages and file types. Finally, when
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Fig. 8. Number of different usage statuses of vulner-
able PyPI dependencies in Github projects.
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Fig. 9. The distribution of causes leading to
bloated-direct PyPI dependencies.

examining active security threats, we find that in 26 out of 816 instances a project invokes a
vulnerable function. This means that there is still a non-negligible number of urgent situations,
where a Python project is exposed to vulnerabilities that are directly exploitable.

Furthermore, our distinction between direct and transitive dependencies in Figure 8 shows that
the majority of vulnerabilities reside in bloated dependencies that are transitive. However, direct
dependencies are mainly responsible for vulnerabilities that appear in (1) invoked methods (i.e.,
active exposure status) or (2) bloated methods found in used releases. This can be attributed to
direct dependencies exhibiting a higher usage status, as previously demonstrated on RQ1 (Figure 7).

Software bloat: To examine the prevalence of bloated methods and files in vulnerable releases,
we need to take into account that several projects may depend upon the same vulnerable release. To
address this challenge we consider all relationships between a vulnerable release and a dependent
project, and measure the corresponding bloat. The results are illustrated in Figure 6 where we
present the distribution of bloated code in terms of files and functions. We focus on two categories,
(1) releases that include vulnerable code invoked by the projects (active exposure status), and (2)
used releases with unused vulnerable code (inactive exposure status). On average, 63% of the files
in an active vulnerable release are bloated, increasing to 85% in the case of methods. In contrast,
for inactive vulnerable dependencies, an average of 80% of files and 94% of methods are bloated.

Overall, our results show that a significant number (89%) of vulnerabilities in PyPI dependencies
are found within bloated code sections, with a noteworthy 15% existing in used dependencies.

3.3 RQ3: What are the main causes of bloated PyPI dependencies?
To delve into the root causes of bloated dependency code, we manually inspected 50 bloated
dependencies picked at random as explained in Section 2.4. Our manual analysis has resulted in six
categories as shown in Figure 9.

Replacement with built-in or alternate library: This root cause arises when developers shift
from a third-party library to a built-in or a different library, but neglect to remove the former from
their declared dependencies. For example, the ewels/MultiQC project replaced simplejson library
with the Python’s internal module json, but failed to remove simplejson from its dependency list.
Such cases account for nine instances in our study.
Feature removal: As software evolves, certain features or code sections may be deprecated

or removed. Such removals could render some dependencies redundant. Our investigation iden-
tifies ten instances, where some dependencies become bloated, after developers remove certain
implementation features from their code base. For example, the HadrienG/InSilicoSeq project
uses the future library to bridge compatibility between Python 2 and Python 3. However, at a
later stage, the project decides to drop support for Python 2, removing the corresponding source
code and making the dependency to package future redundant.
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Unused from the first time: We have discovered instances where dependencies are intro-
duced in a project dependency list without any corresponding usage in the source code. The
reasons for these introductions often remain unclear. For example, in one case the developers
of PSLmodels/Cost-of-Capital-Calculator project may have added the psutil library for po-
tential benchmarking, but was never used in the code base. We have identified eight bloated
dependencies that lie in this category. This highlights that some developers tend to introduce
extraneous dependencies, possibly during exploratory development phases. Caution during code
reviews and cleanup routines can help prune such inclusions.

Redundant declaration of a transitive dependency: When installing a Python project, pip
resolves all transitive dependencies without requiring them to be declared in the project’s depen-
dency list. We have observed that 15 projects redundantly list their transitive dependencies as direct.
Such a practice possesses risks: for example, consider a package 𝑝1 that stops relying on package
𝑝2. All projects that redundantly depend on both 𝑝1 and 𝑝2 will still retain a dependency to 𝑝2. This
can make projects maintain redundant transitive dependencies, and worse, face version conflicts
due to discrepancies between directly and transitively included dependencies. By eliminating such
redundancies, projects have exclusive control over the dependencies they directly invoke. These
redundancies can be attributed to misunderstandings about how the dependency resolution process
of pip works. Specifically, through our interaction with developers (RQ4), we have observed that
some development teams are unaware that pip also retrieves transitive dependencies.
Security constraint: This category contains cases where developers intentionally constrain

the versions of transitive dependencies for security reasons, e.g., to avoid resolving a transitive
dependency to a package release with a known vulnerability. We have run into five such instances.
This phenomenon occurs when a library upon which the application relies, fails to timely update its
direct dependencies andmitigate the security risk, thereby indirectly exposing end-user applications
to vulnerabilities that are mitigated through this preventive measure.

Compatibility constraint: Developers occasionally enforce version constraints on transitive
dependencies to ensure compatibility and avoid potential conflicts with certain functionalities or
components [Patra et al. 2018; Wang et al. 2020]. In our study, we have detected three such instances.
As an example, the 20c/vaping project constrains the version of package Werkzeug between 2.0.0
and 2.1.0. This declaration is accompanied by the following comment: “FIXME: werkzeug >2.1.0
breaks static file serving”. This comment is a sign of a compatibility issue: versions of Werkzeug
greater than 2.1.0 would break a specific functionality in the project.
Overall, the primary factor contributing to bloated-direct PyPI dependencies is mistakes and

omissions during code refactoring (34%). Additionally, another 30% of the bloated dependencies
arise from unnecessary listing of transitive dependencies, while 16% comes from dependencies that
are introduced without ever being used. Our results uncover several key areas for consideration,
including (1) the significance of maintaining updated configuration files after code refactoring, and
(2) better control over transitive dependencies avoiding the declaration of redundant dependencies.

3.4 RQ4: To what extent are developers willing to remove bloated PyPI dependencies?
We aim to investigate how developers react to bloated PyPI dependencies. To do so, we have opened
36 pull requests that fix 42 bloated dependencies detected by our reachability analysis (Section 2.4).
Table 3 presents the outcomes of these pull requests. Note that a single pull request can propose
the removal of multiple dependencies. At the time of writing, we have received responses for
31 out of 36 pull requests submitted. For the five pending PRs, the involved repositories have
collectively seen a mere total of 10 commits over the three-month period we awaited feedback.
This suggests that the absence of feedback on our PRs is likely due to project inactivity. Among the
PRs that received feedback, 90% (28/31) have been accepted and integrated into developers’ code
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Table 3. The status of our pull requests,
proposing the removal of bloated depen-
dencies (BD)

PR status # of PRs # of BD removed
Merged 28 33
Approved 2 2
Rejected 1 1
Pending 5 6
Total 36 42

0 2 4 6 8 10 12 14 16
Bloated dependencies

Built-in or alternate library

Unused from the first time

Feature removal

Transitive dependency

PR Status
Merged
Approved
Pending
Rejected

Fig. 10. The distribution of PR statuses per root cause.

base, resulting in the removal of 33 bloated direct dependencies. In total, this process led to the
removal of 285,322 lines of Python code from projects’ code base. In two cases, developers have
approved our fixes, but they have not merged the corresponding pull requests yet. In a notable
instance, a PR was declined because the developer prioritized the potential future utility of a
dependency over code simplification. Developers often expressed gratitude for our pull requests,
with many highlighting the value of the proposed changes. Specifically, in 22 out of the 28 merged
cases, developers conveyed their appreciation (e.g., ”Huh, great spot - thanks!”, ”Thanks for the
detailed explanation!”, or ”thanks for catching that.”). This positive feedback indicates that developers
understand the risks of bloated dependencies, and the importance of removing them. Below, we
discuss some interesting cases that come from the our interaction with developers.

Example 1: In the project EasyPost/easypost-python, we encountered diverse feedback from
the development team. A developer initially rejected our PR, commenting: “If the dependency is
unused, that is a mistake as we want to implement typing in this library. Recommend to reject.”.
However, the lead developer answered with "This dependency is unused at this time and has been
since its introduction over a year and a half ago. I’m down to remove it. If we ever need it in the future
we can easily reintroduce it." Subsequently, the opposing developer approved and merged our fix.

Example 2: In the project maurosoria/dirsearch, we submitted a PR proposing the removal
of five bloated transitive dependencies. Initially, the developers were hesitant with removing those
dependencies: "Hi, thanks for your PR, I remember there were reasons in the past that made us keep
those dependencies in requirements.txt, I’m not sure if it’s safe or not to remove them...". However, after
three months, the lead developer proceeded to merge the pull request commenting: "Thanks for the
detailed explanation!". This interaction reveals that developers are sometimes hesitant to remove
explicitly declared transitive dependencies without a clear rationale for their initial inclusion.
Qualitative analysis on our PRs: To gain further insights, we also performed a qualitative

analysis on our PRs in terms of their (1) lifespan, (2) accompanying developer discussions, and (3)
relation to the underlying root causes of the bloated dependencies they fix. Figure 11 shows the
lifespan of our accepted PRs, measuring the duration from when the PR is opened to when it is
merged. The distribution of merge times ranges from same-day merges to those extending over a
month. While some PRs are quickly integrated, others require more extensive consideration. This
might be attributed to the resources and the PR prioritization of each project development team.

Figure 12 shows the classes of the discussions that took place before merging our accepted fixes.
The majority of PRs (68%) were accepted without the need of further discussions, indicating that
many changes were straightforward and immediately recognized as valuable. However, discussions
arose in nine cases. For example, five PRs involved changes to meet contributing guidelines, and
fix failing tests unrelated to our PR. In other instances, developer requested reverting changes in
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(18%)

6 
(21%)

9 
(32%)

8 
(29%)

Duration of Merged Pull Requests
Duration

Same Day
1 Day to 1 Week
1 Week to 1 Month
Over 1 Month

Fig. 11. Duration of merged pull requests.

19 
(68%)

5 
(18%)

4 
(14%)

Summary of Discussions on Merged Pull Requests
Discussion Summary

No Discussion
Discussions Involving Changes
Discussions without Requiring Changes

Fig. 12. Summary of discussions on merged pull re-
quests.

certain files where a dependency, though redundant for the package itself, was required for specific
operational contexts, such as continuous integration processes. Finally, four merged PRs led to
discussions about our fixes without requiring changes, as seen in Example 1.
Figure 10 also shows how the underlying root cause of a bloated dependency affects the status

of our PRs. 22 accepted fixes are linked to direct dependencies that fall into two categories: (1)
mistakenly declared dependencies, and (2) dependencies that are no longer used due to code
refactoring, such as feature removal. Interestingly, there are 11 accepted fixes related to redundant
transitive dependencies. This pattern of responses could be attributed to the clarity of root causes.
For example, removing unnecessary dependencies is often part of a code cleanup process following
pervasive code changes. Unfortunately, developers sometimes overlook this cleanup, which makes
them quickly address and resolve issues that stem from such omissions.

4 KEY TAKEAWAYS AND SUGGESTIONS
We now discuss several implications of our work, and how our findings can serve as a basis for
future research endeavors in debloating the PyPI ecoysystem.

The PyPI ecosystem exhibits considerable resource underutilization. We have shown that a
substantial portion of Python dependency code is bloated (Section 3.1). This indicates a need for
tailored solutions within the Python domain. Researchers and practitioners should consider the
development of Python-specific debloating techniques that effectively address the widespread bloat
in the PyPI ecosystem.

Dependency code bloat becomes more prevalent via fine-grained analysis. Figure 5 reveals
that the majority of the dependency code bloat can only be identified only when examining inter-
project dependencies at file- or method-level. Removing unused packages will contribute to reducing
bloat to some extent [Soto-Valero et al. 2021b], however a significant amount of bloat hidden within
used dependencies will continue to exist. Hence, effective debloating techniques should consider
file and method bloat within dependencies that are partially used by the developers.
“Time-bombs” in bloated dependency code. Our results reveal a relationship between code

bloat and security vulnerabilities in the PyPI ecosystem. A significant 89% of these vulnerabilities
are identified within bloated code regions (Figure 8). Interestingly, 15% of them are marked as
“time-bombs”, i.e., the corresponding code is not used at the moment, but this may change in the
future and trigger the vulnerability. Another layer of complexity is added by a non-trivial number
of vulnerabilities (7.5%) found in non-Python files. This is consistent with the findings of a recent
study on the security risks posed by native extensions in ecosystems like PyPI [Staicu et al. 2023].
Addressing the identified cross-language vulnerabilities (e.g., via a technique that goes beyond
Python source files) could further reduce the attack surface of Python projects.
Given the absence of detailed localization information for vulnerabilities in CVEs, devising a

fully automated debloating process for defect removal is technically challenging. In response, we
advocate for a method akin to our study’s approach (Section 2.4). This involves an automated tool,
scanning patching commits linked to CVEs to identify potentially vulnerable methods or classes.
Such a strategy might introduce false positives by over-approximating vulnerable functions or
classes, as not all of the functions modified in the commit might be vulnerable. To address this,
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we propose a semi-automatic solution where a tool (e.g., a linter) alerts developers about bloated
dependency code (i.e., classes or methods) appearing in patching commits, suggesting careful
examination and possible removal.

Code refactoring introduces bloated dependencies. Figure 9 shows that bloated dependencies
are introduced after extensive modifications in the developers’ code base, such as feature removal,
replacement of algorithms, etc. This suggests that developers might be less careful when tidying
up post-feature deprecations or refactoring. To mitigate this issue, existing linters and automated
refactoring tools, such as pylint or flake8, could be extended with additional functionalities.
Such functionalities should check and update (if necessary) the configuration files of a project so
that the declared list of dependencies contains only used ones.

Developers are willing to remove bloated dependency code especially when they are aware
of its major causes. Our interaction with development teams indicates that developers are willing
to debloat their code (Section 3.4). This finding contradicts with the findings of a previous study
on bloated dependencies [Cao et al. 2023], where the authors found that the majority of Python
developers are not willing to remove bloated dependencies. This discrepancy in findings could
be attributed to our methodology, which not only identifies issues, but also offers immediate and
well-justified action steps via our PRs (see Figure 4). Based on this observation, future linters
and debloating tools should clearly enumerate and document the reasons why a certain bloated
dependency code should be removed and, importantly, offer actionable steps akin to our pull
requests to guide developers in making these changes effectively. Finally, our findings suggest that
future tools should prioritize warnings based on the causes of bloated code. For example, developers
are more likely to accept debloating code that stems from code refactoring processes.

5 THREATS TO VALIDITY
Internal validity: One threat to the internal validity of our work is related to the resulting
FPDG. Because of the dynamic nature of Python, our static FPDG might contain false negatives
and false positives. This is unavoidable even when dealing with statically-typed programming
languages, such as Java [Soto-Valero et al. 2021a,b]. We build FPDG using PyCG [Salis et al. 2021],
the de-facto static analyzer of Python, which has been employed in other empirical studies [Simon
et al. 2023; Venkatesh et al. 2023]. Another threat is the representativeness of the selected Python
projects. Using established selection criteria [Abdalkareem et al. 2020; Kalliamvakou et al. 2014],
we chose a carefully crafted dataset [Alfadel et al. 2023; Alfadel M 2020], that contains real-world
Python applications from various domains, ranging from web technologies to biomedical tools amd
high-performance computing. Finally, another internal threat to validity relates to our stitching
process and the resolution of external calls (Section 2.2). First, we consulted the top_level.txt
file to associate every external module with its package distribution. This is the standard practice
employed by other studies [Cao et al. 2023]. Second, we leveraged Python’s metaprogramming
features (e.g., inspect) to reliably identify the definition namespace of every external method.
External validity: The generalizability of our findings to other software ecosystems is one

threat to external validity. Our findings are restricted to the scope of Python and the PyPI ecosystem:
Generalising them requires further research. Notably, some of our findings (e.g., RQ1—prevalence)
are also consistent with the findings of other studies targeting Maven [Soto-Valero et al. 2021b].
The representativeness of the bloated dependencies selected for answering RQ3 and RQ4 is

another threat to the external validity. Since the number of bloated dependencies found by our anal-
ysis is large, it is not feasible to manually analyze all of them for RQ3 and RQ4. We picked a random
sample of 50 bloated dependencies, which is in line with other studies on bloated dependencies. For
example, Cao et al. [2023] havemanually analyzed the causes of 127 bloated dependencies. Following
the reasoning outlined in the work ofMastrangelo et al. [2019], whenworking with a random sample
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of 50 bloated dependencies, there is an approximately 8% chance of missing a cause category with
a relative frequency of at least 5%. These probabilities are computed by the following formula de-
scribed in the work of Mastrangelo et al. [2019]: (1− relative_frequency)sample_size = (1−5%)50 ≈ 8%.
Finally, our manual cause analysis might be subjective. To mitigate this threat, the proposed

categorization has been validated by an additional researcher, following the best practices in manual
qualitative analyses [Brereton et al. 2007; Chaliasos et al. 2021; Kotti et al. 2023].

6 RELATEDWORK
Software bloat: Research has focused on reducing the code size of source programs by adopting
program transformation and syntax-aware techniques [Regehr et al. 2012; Sun et al. 2018], or
reinforcement learning [Heo et al. 2018]. Other debloating techniques operate on C/C++ binaries
to reduce their attack surface [Qian et al. 2019; Quach et al. 2018; Sharif et al. 2018]. In recent years,
there has been a growing interest in debloating Java applications [Bruce et al. 2020; Jiang et al. 2016;
Macias et al. 2020; Soto-Valero et al. 2023, 2021b]. The proposed tools employ static and dynamic
analysis that works on Java bytecode. Another important body of work has targeted debloating
JavaScript and PHP web applications. For JavaScript, approaches range from static [Koishybayev
and Kapravelos 2020] and dynamic analysis [Vázquez et al. 2019] to hybrid approaches [Turcotte
et al. 2022]. For PHP, techniques range from semi-automated static debloating schemes [Jahanshahi
et al. 2023] to dynamic analysis [Azad et al. 2019], and concolic execution [Azad et al. 2023].
Software debloating has also been applied to domain-specific programs, including the Chromium
browser [Qian et al. 2020], Android applications [Jiang et al. 2018], Docker containers [Rastogi et al.
2017] and shared binary libraries [Agadakos et al. 2020]. Surprisingly, despite its popularity, there
has not yet been any developments in debloating techniques for Python. Our work provides insights
that could guide the design of effective debloating methods tailored to the Python ecosystem.
Bloated dependencies: The concept of “bloated dependencies” was first introduced by Soto-

Valero et al. [2021b] in their study that focuses on the Maven ecosystem. By statically analyzing
Java bytecode, they identify and remove unused dependencies from Maven POM files. Their study
reveals a significant 75% bloat rate in dependency relationships, primarily stemming from transitive
dependencies. In comparison, our findings indicate a bloated dependency rate of only 51%, probably
indicating a better dependency utilization in the PyPI ecosystem. In a subsequent study [Soto-Valero
et al. 2021a], the authors find that the addition of new and unused dependencies is the main root
cause of bloated direct dependencies. In contrast, we identify omissions during code refactoring
processes as the main root cause of bloat (RQ3). In another study, Hejderup et al. [2022] leverage
call graphs to build the dependency network of the Rust ecosystem. They discover that ∼60% of the
package dependencies are bloated. Jafari et al. [2022] identifies a similar trend in the npm ecosystem.
The closest study to our work is the one of Cao et al. [2023], who investigate “dependency

smells” across 132 Python projects. The term “dependency smells” describes a set of dependency-
related issues, including bloated dependencies. To identify bloated dependencies, the authors parse
configuration files and analyze import statements in the source code. The authors characterize
each bloated dependency by its prevalence, evolution, causes, and developer perceptions. The main
findings of this study show that bloated direct dependencies appear in 86% of projects, with 75% of
these dependencies coming from new dependency declarations without subsequent source code use.
Contrary to this study, our approach is more fine-grained: we quantify bloat at both the file- and
method-level. Additionally, our analysis is able to distinguish transitive dependencies from direct
ones. This is particularly evident in our root cause analysis. For instance, our fine-grained analysis
allows us to know whether a dependency declaration corresponds to a transitive dependency.
Without this knowledge, we would have misclassified such cases as “unused from the first time”.
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Furthermore, Cao et al. [2023] pinpoint that developers tend to be hesitant when it comes to
removing bloated dependencies (0/10 reported issues fixed, 4/10 rejected). In contrast, we show that
developers are willing to remove unused direct dependencies, even in cases where the dependencies
are used transitively. As described in Section 4, this difference could be explained by our well-
justified pull requests that incorporate the results of our root cause analysis.

Access path reasoning: Wang et al. [2021] focus on restoring the execution environments of
Jupyter notebooks by identifying the PyPI packages required for executing the notebooks. To achieve
this, they statically analyze the source code and map library APIs to their source code definitions
using an import flow analysis. In contrast, we use dynamic analysis to tackle the same issue.
Moreover, recent work on program analysis of JavaScript code involve grammar-based access path
reasoning for call graph construction [Nielsen et al. 2021], extraction of taint specifications [Staicu
et al. 2020], or detection of breaking library changes [Mezzetti et al. 2018; Møller et al. 2020].

Software ecosystem analysis: Hejderup et al. [2018] introduce the idea of using call graphs to
represent actual calling relationships within software ecosystems. Building on this method, Mir
et al. [2023] design a fine-grained analysis for the Maven ecosystem, and reveal that while one third
of the packages are vulnerable due to transitive dependencies, only 1% of them has a reachable call
to a vulnerable dependency method. This is in line with our RQ2 results.

In recent years, there has been a growing interest in software supply-chain security and particu-
larly within scripting languages ecosystems. Duan et al. [2020] perform an in-depth study on the
indicators of malicious packages in the ecosystems of PyPI, RubyGems and npm, and construct a
program analysis pipeline to detect malicious packages in those ecosystems. Focusing on JavaScript,
Zahan et al. [2022] analyze the metadata of 1.6 million packages and propose specific metrics
that can act as warning signs for supply chain vulnerabilities. Staicu et al. [2018] reveal the high
prevalence of injection attacks in the npm ecosystem, while Rack and Staicu [2023] conduct an
empirical study on JavaScript bundles and reveal that they are prevalent and often ship vulnerable
dependency code. Similarly, Shcherbakov et al. [2023] study prototype pollutions in Node.js and
find out that they can lead to remote code execution attacks. Focusing on the npm ecosystem,
Zimmermann et al. [2019] indicate that the lack of project maintenance leads to dependency on
vulnerable artifacts. Focusing on the PyPI Ecosystem, Neupane et al. [2023] study more than 1200
typosquatting attacks and define 13 distinct categories of confusion mechanisms. Vu et al. [2020]
propose a source code repositoriy analysis for detecting malicious code in PyPI packages. Alfadel
et al. [2023] find that the average number of vulnerabilities affecting a PyPI package increases over
time, with each vulnerability taking three years to be discovered. Our work provides methods,
impetus, and guidance for counter-regressive software changes involving dependencies.

7 CONCLUSION
Wehave presented the first fine-grained study of bloated dependency code in the PyPI ecosystem.We
have constructed large, inter-project dependency graphs that capture the relationship between 1,032
Python projects and 3,232 PyPI releases at the method level. Using standard graph reachability
algorithms, we study bloated dependency code at different granularities. We find that the PyPI
ecosystem is full of bloat: more than half of the dependencies in a typical Python project are
entirely unused. Worse, the bloat considerably increases when considering the granularity of
files and methods. Further, through our fine-grained analysis, we have identified a number of
“time-bombs”(15%), i.e., vulnerable code that is not invoked by the different projects, yet it exists
in packages that the projects use. Moreover, bloated dependency code mainly originates from
pervasive code changes (e.g., feature removals). Finally, developers are willing to remove their
bloated dependencies: 28 out of 36 pull requests we submitted have already been merged by
developers, removing a total of 33 direct dependencies. We believe our work can guide the design of
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future bloat detection and prevention tools for Python. Such tools should effectively address bloat
at granularities that go beyond the package level, thereby significantly reducing maintenance risks
of Python applications. Finally, bloat prevention tools need to provide informative and actionable
messages to developers, and prioritize warnings based on the root cause of bloat.

8 DATA AVAILABILITY
We have incorporated the data supporting our results within our submission.

REFERENCES
2023. GitHub Advisory Database. https://github.com/advisories [Online; accessed 11-September-2023].
Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. 2020. On the impact of using trivial packages:

an empirical case study on npm and PyPI. Empirical Software Engineering 25, 2 (01 Mar 2020), 1168–1204. https:
//doi.org/10.1007/s10664-019-09792-9

Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-King, Jearson Alfajardo, Benjamin Shteinfeld, David Williams-
King, Vasileios P. Kemerlis, and Georgios Portokalidis. 2020. Large-Scale Debloating of Binary Shared Libraries. Digital
Threats 1, 4, Article 19 (dec 2020), 28 pages. https://doi.org/10.1145/3414997

Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2023. Empirical analysis of security vulnerabilities in Python
packages. Empirical Software Engineering 28, 3 (25 Mar 2023), 59. https://doi.org/10.1007/s10664-022-10278-4

Shihab E Alfadel M, Costa DE. 2020. Empirical Analysis of Security Vulnerabilities in Python Packages. https://doi.org/10.
5281/zenodo.5645517

Babak Amin Azad, Rasoul Jahanshahi, Chris Tsoukaladelis, Manuel Egele, and Nick Nikiforakis. 2023. AnimateDead:
Debloating Web Applications Using Concolic Execution. In 32nd USENIX Security Symposium (USENIX Security 23).
USENIX Association, Anaheim, CA, 5575–5591. https://www.usenix.org/conference/usenixsecurity23/presentation/azad

Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More: Quantifying the Security Benefits of Debloating
Web Applications. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
1697–1714. https://www.usenix.org/conference/usenixsecurity19/presentation/azad

Paolo Boldi and Georgios Gousios. 2020. Fine-Grained Network Analysis for Modern Software Ecosystems. ACM Trans.
Internet Technol. 21, 1, Article 1 (dec 2020), 14 pages. https://doi.org/10.1145/3418209

Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007. Lessons from Applying the
Systematic Literature Review Process within the Software Engineering Domain. J. Syst. Softw. 80, 4 (apr 2007), 571–583.
https://doi.org/10.1016/j.jss.2006.07.009

Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim. 2020. JShrink: In-Depth Investigation
into Debloating Modern Java Applications. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association
for Computing Machinery, New York, NY, USA, 135–146. https://doi.org/10.1145/3368089.3409738

Brett Cannon, Nathaniel Smith, and Donald Stufft. 2016. PEP 518 – Specifying Minimum Build System Requirements for
Python Projects. PEP 518. Python Software Foundation. https://www.python.org/dev/peps/pep-0518/

Yulu Cao, Lin Chen, Wanwangying Ma, Yanhui Li, Yuming Zhou, and Linzhang Wang. 2023. Towards Better Dependency
Management: A First Look at Dependency Smells in Python Projects. IEEE Transactions on Software Engineering 49, 4
(2023), 1741–1765. https://doi.org/10.1109/TSE.2022.3191353

Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Charalambos Mitropoulos, Dimitris Mitropoulos, and
Diomidis Spinellis. 2021. Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers. Proc.
ACM Program. Lang. 5, OOPSLA, Article 123 (Oct. 2021), 30 pages. https://doi.org/10.1145/3485500

Valerio Cosentino, Javier L. Cánovas Izquierdo, and Jordi Cabot. 2017. A Systematic Mapping Study of Software Development
With GitHub. IEEE Access 5 (2017), 7173–7192. https://doi.org/10.1109/ACCESS.2017.2682323

Russ Cox. 2019. Surviving Software Dependencies. Commun. ACM 62, 9 (aug 2019), 36–43. https://doi.org/10.1145/3347446
Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in GitHub forMSR Studies. In 2021 IEEE/ACM 18th

International Conference on Mining Software Repositories (MSR). 560–564. https://doi.org/10.1109/MSR52588.2021.00074
Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformaggio, and Wenke Lee. 2020. Towards

Measuring Supply Chain Attacks on Package Managers for Interpreted Languages. Proceedings 2021 Network and
Distributed System Security Symposium (2020). https://api.semanticscholar.org/CorpusID:227247756

Daniel M. German, Massimiliano Di Penta, and Julius Davies. 2010. Understanding and Auditing the Licensing of Open
Source Software Distributions. In 2010 IEEE 18th International Conference on Program Comprehension. 84–93. https:
//doi.org/10.1109/ICPC.2010.48

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://github.com/advisories
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1007/s10664-019-09792-9
https://doi.org/10.1145/3414997
https://doi.org/10.1007/s10664-022-10278-4
https://doi.org/10.5281/zenodo.5645517
https://doi.org/10.5281/zenodo.5645517
https://www.usenix.org/conference/usenixsecurity23/presentation/azad
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://doi.org/10.1145/3418209
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/3368089.3409738
https://www.python.org/dev/peps/pep-0518/
https://doi.org/10.1109/TSE.2022.3191353
https://doi.org/10.1145/3485500
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1145/3347446
https://doi.org/10.1109/MSR52588.2021.00074
https://api.semanticscholar.org/CorpusID:227247756
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1109/ICPC.2010.48


Pr
ep
rin

t
1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Georgios-Petros Drosos et al.

GitHub. 2023. The State of the Octoverse: Top Programming Languages 2023. https://github.blog/2023-11-08-the-state-of-
open-source-and-ai/. Online: accessed 29 February 2023.

Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2019. A double-edged sword? Software reuse and potential
security vulnerabilities. Lecture Notes in Computer Science (2019), 187–203. https://doi.org/10.1007/978-3-030-22888-0_13

Jürgen Gmach. 2021. Remove unused Sphinx dependency. https://github.com/zopefoundation/Zope/pull/968 [Online;
accessed 26-September-2023].

Joseph Hejderup, Moritz Beller, Konstantinos Triantafyllou, and Georgios Gousios. 2022. Präzi: from package-based to
call-based dependency networks. Empirical Software Engineering 27, 5 (30 May 2022), 102. https://doi.org/10.1007/s10664-
021-10071-9

Joseph Hejderup, Arie van Deursen, and Georgios Gousios. 2018. Software Ecosystem Call Graph for Dependency Man-
agement. In Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Re-
sults (Gothenburg, Sweden) (ICSE-NIER ’18). Association for Computing Machinery, New York, NY, USA, 101–104.
https://doi.org/10.1145/3183399.3183417

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective Program Debloating via Reinforcement
Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). Association for Computing Machinery, New York, NY, USA, 380–394. https://doi.org/10.1145/3243734.3243838

Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and Nikolaos Tsantalis. 2022. Dependency Smells
in JavaScript Projects. IEEE Trans. Softw. Eng. 48, 10 (oct 2022), 3790–3807. https://doi.org/10.1109/TSE.2021.3106247

Rasoul Jahanshahi, Babak Amin Azad, Nick Nikiforakis, and Manuel Egele. 2023. Minimalist: Semi-automated Debloating
of PHP Web Applications through Static Analysis. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA, 5557–5573. https://www.usenix.org/conference/usenixsecurity23/presentation/jahanshahi

Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and Dinghao Wu. 2018. RedDroid: Android Application Redundancy
Customization Based on Static Analysis. In 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE). 189–199. https://doi.org/10.1109/ISSRE.2018.00029

Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization and Bloatware Mitigation Based on Static
Analysis. In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. 12–21. https:
//doi.org/10.1109/COMPSAC.2016.146

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2014. The
Promises and Perils of Mining GitHub. In Proceedings of the 11th Working Conference on Mining Software Repositories
(Hyderabad, India) (MSR 2014). Association for Computing Machinery, New York, NY, USA, 92–101. https://doi.org/10.
1145/2597073.2597074

Mehdi Keshani. 2021. Scalable Call Graph Constructor for Maven. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). 99–101. https://doi.org/10.1109/ICSE-Companion52605.
2021.00046

Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing the Attack Surface of Node.js Applications.
In 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020). USENIX Association, San
Sebastian, 121–134. https://www.usenix.org/conference/raid2020/presentation/koishybayev

Zoe Kotti, Rafaila Galanopoulou, and Diomidis Spinellis. 2023. Machine Learning for Software Engineering: A Tertiary
Study. ACM Comput. Surv. 55, 12, Article 256 (mar 2023), 39 pages. https://doi.org/10.1145/3572905

Charles W. Krueger. 1992. Software Reuse. ACM Comput. Surv. 24, 2 (jun 1992), 131–183. https://doi.org/10.1145/130844.
130856

Konner Macias, Mihir Mathur, Bobby R. Bruce, Tianyi Zhang, and Miryung Kim. 2020. WebJShrink: A Web Service for
Debloating Java Bytecode. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing
Machinery, New York, NY, USA, 1665–1669. https://doi.org/10.1145/3368089.3417934

Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom. 2019. Casting about in the Dark: An Empirical Study of
Cast Operations in Java Programs. Proc. ACM Program. Lang. 3, OOPSLA, Article 158 (Oct. 2019), 31 pages. https:
//doi.org/10.1145/3360584

Hayden Melton and Ewan Tempero. 2007. An empirical study of cycles among classes in Java. Empirical Software Engineering
12, 4 (01 Aug 2007), 389–415. https://doi.org/10.1007/s10664-006-9033-1

Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type Regression Testing to Detect Breaking Changes in
Node.js Libraries. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 109), Todd Millstein (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 7:1–7:24. https://doi.org/10.4230/LIPIcs.ECOOP.2018.7

Amir M. Mir, Mehdi Keshani, and Sebastian Proksch. 2023. On the Effect of Transitivity and Granularity on Vulnerabil-
ity Propagation in the Maven Ecosystem. In 2023 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 201–211. https://doi.org/10.1109/SANER56733.2023.00028

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://doi.org/10.1007/978-3-030-22888-0_13
https://github.com/zopefoundation/Zope/pull/968
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1007/s10664-021-10071-9
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1109/TSE.2021.3106247
https://www.usenix.org/conference/usenixsecurity23/presentation/jahanshahi
https://doi.org/10.1109/ISSRE.2018.00029
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ICSE-Companion52605.2021.00046
https://doi.org/10.1109/ICSE-Companion52605.2021.00046
https://www.usenix.org/conference/raid2020/presentation/koishybayev
https://doi.org/10.1145/3572905
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/130844.130856
https://doi.org/10.1145/3368089.3417934
https://doi.org/10.1145/3360584
https://doi.org/10.1145/3360584
https://doi.org/10.1007/s10664-006-9033-1
https://doi.org/10.4230/LIPIcs.ECOOP.2018.7
https://doi.org/10.1109/SANER56733.2023.00028


Pr
ep
rin

t
1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Bloat beneath Python’s Scales: A Fine-Grained Inter-Project Dependency Analysis 23

Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, productivity and economic benefits of software reuse: a review of
industrial studies. Empirical Software Engineering 12, 5 (01 Oct 2007), 471–516. https://doi.org/10.1007/s10664-007-9040-x

Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. 2020. Detecting locations in JavaScript programs
affected by breaking library changes. Proc. ACM Program. Lang. 4, OOPSLA, Article 187 (nov 2020), 25 pages. https:
//doi.org/10.1145/3428255

Peter Naur and Brian Randell. 1969. Software engineering: Report of a conference sponsored by the nato science committee,
garmisch, germany, 7th-11th october 1968. (1969).

Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo De Carli. 2023. Beyond Typosquatting: An
In-depth Look at Package Confusion. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 3439–3456. https://www.usenix.org/conference/usenixsecurity23/presentation/neupane

Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. 2021. Modular call graph construction for security
scanning of Node.js applications. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY, USA, 29–41.
https://doi.org/10.1145/3460319.3464836

Tosin Daniel Oyetoyan, Jean-Rémy Falleri, Jens Dietrich, and Kamil Jezek. 2015. Circular dependencies and change-proneness:
An empirical study. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER).
241–250. https://doi.org/10.1109/SANER.2015.7081834

Jibesh Patra, Pooja N. Dixit, and Michael Pradel. 2018. ConflictJS: Finding and Understanding Conflicts between JavaScript
Libraries. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 741–751. https://doi.org/10.1145/3180155.3180184

Serena Elisa Ponta, Wolfram Fischer, Henrik Plate, and Antonino Sabetta. 2021. The Used, the Bloated, and the Vulnerable:
Reducing the Attack Surface of an Industrial Application. In 2021 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 555–558. https://doi.org/10.1109/ICSME52107.2021.00056

Python Packaging Authority. 2023. Pip v23.1.2 Documentation: Build System Interface. https://pip.pypa.io/en/stable/
reference/build-system/# Accessed: July 9, 2023.

Python Packaging Authority. 2024. top_level.txt – Conflict Management Metadata. https://setuptools.pypa.io/en/latest/
deprecated/python_eggs.html#top-level-txt-conflict-management-metadata [Online; accessed 21-February-2024].

Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and Wenke Lee. 2019. RAZOR: A Framework for
Post-deployment Software Debloating. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, 1733–1750. https://www.usenix.org/conference/usenixsecurity19/presentation/qian

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee. 2020. Slimium: Debloating the Chromium
Browser with Feature Subsetting. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY, USA, 461–476. https:
//doi.org/10.1145/3372297.3417866

Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through Piece-Wise Compilation and Loading. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 869–886. https://www.
usenix.org/conference/usenixsecurity18/presentation/quach

Jeremy Rack and Cristian-Alexandru Staicu. 2023. Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web
and its Security Implications. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (<conf-loc>, <city>Copenhagen</city>, <country>Denmark</country>, </conf-loc>) (CCS ’23). Association for
Computing Machinery, New York, NY, USA, 3198–3212. https://doi.org/10.1145/3576915.3623140

Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick McDaniel. 2017. Cimplifier: Automatically
Debloating Containers. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA, 476–486. https://doi.org/10.
1145/3106237.3106271

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-Case Reduction for C Compiler
Bugs. SIGPLAN Not. 47, 6 (jun 2012), 335–346. https://doi.org/10.1145/2345156.2254104

Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dimitris Mitropoulos. 2021. PyCG: Practical Call
Graph Generation in Python. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 1646–1657.
https://doi.org/10.1109/ICSE43902.2021.00146

Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018. TRIMMER: Application Specialization
for Code Debloating. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE ’18). Association for Computing Machinery, New York, NY, USA, 329–339. https://doi.org/10.
1145/3238147.3238160

Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent Spring: Prototype Pollution Leads to
Remote Code Execution in Node.js. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 5521–5538. https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1145/3428255
https://doi.org/10.1145/3428255
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1109/SANER.2015.7081834
https://doi.org/10.1145/3180155.3180184
https://doi.org/10.1109/ICSME52107.2021.00056
https://pip.pypa.io/en/stable/reference/build-system/#
https://pip.pypa.io/en/stable/reference/build-system/#
https://setuptools.pypa.io/en/latest/deprecated/python_eggs.html#top-level-txt-conflict-management-metadata
https://setuptools.pypa.io/en/latest/deprecated/python_eggs.html#top-level-txt-conflict-management-metadata
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/3372297.3417866
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://doi.org/10.1145/3576915.3623140
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/2345156.2254104
https://doi.org/10.1109/ICSE43902.2021.00146
https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1145/3238147.3238160
https://www.usenix.org/conference/usenixsecurity23/presentation/shcherbakov


Pr
ep
rin

t
1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Georgios-Petros Drosos et al.

Sebastian Simon, Nikolay Kolyada, Christopher Akiki, Martin Potthast, Benno Stein, and Norbert Siegmund. 2023. Exploring
Hyperparameter Usage and Tuning in Machine Learning Research. In 2023 IEEE/ACM 2nd International Conference on AI
Engineering – Software Engineering for AI (CAIN). 68–79. https://doi.org/10.1109/CAIN58948.2023.00016

César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021a. A Longitudinal Analysis of Bloated Java Dependencies
(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA, 1021–1031. https://doi.org/10.1145/3468264.
3468589

César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry. 2023. Coverage-Based Debloating for Java
Bytecode. ACM Trans. Softw. Eng. Methodol. 32, 2, Article 38 (apr 2023), 34 pages. https://doi.org/10.1145/3546948

César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021b. A comprehensive study of bloated
dependencies in the Maven ecosystem. Empirical Software Engineering 26, 3 (25 Mar 2021), 45. https://doi.org/10.1007/
s10664-020-09914-8

Diomidis Spinellis. 2012. Package Management Systems. IEEE Softw. 29, 2 (mar 2012), 84–86. https://doi.org/10.1109/MS.
2012.38

Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE: Understanding and Automati-
cally Preventing Injection Attacks on NODE.JS. In Network and Distributed System Security Symposium. https:
//api.semanticscholar.org/CorpusID:51951699

Cristian-Alexandru Staicu, Sazzadur Rahaman, Ágnes Kiss, and Michael Backes. 2023. Bilingual Problems: Studying the
Security Risks Incurred by Native Extensions in Scripting Languages. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 6133–6150. https://www.usenix.org/conference/usenixsecurity23/
presentation/staicu

Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and Michael Pradel. 2020. Extracting taint
specifications for JavaScript libraries. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 198–209. https://doi.org/10.
1145/3377811.3380390

Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018. Perses: Syntax-Guided Program Reduction.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). 361–371. https://doi.org/10.1145/3180155.
3180236

Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2014. Refactoring for Software Design Smells: Managing
Technical Debt (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Alexi Turcotte, Ellen Arteca, Ashish Mishra, Saba Alimadadi, and Frank Tip. 2022. Stubbifier: debloating dynamic server-side
JavaScript applications. Empirical Software Engineering 27, 7 (20 Sep 2022), 161. https://doi.org/10.1007/s10664-022-
10195-6

Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel M. German, and Armijn Hemel. 2014. Tracing
Software Build Processes to Uncover License Compliance Inconsistencies. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing Machinery, New
York, NY, USA, 731–742. https://doi.org/10.1145/2642937.2643013

Hernán Ceferino Vázquez, Alexandre Bergel, Santiago Vidal, JA Díaz Pace, and Claudia Marcos. 2019. Slimming JavaScript
applications: An approach for removing unused functions from JavaScript libraries. Information and Software Technology
107 (2019), 18–29. https://doi.org/10.1016/j.infsof.2018.10.009

A. Shivarpatna Venkatesh, J. Wang, L. Li, and E. Bodden. 2023. Enhancing Comprehension and Navigation in Jupyter
Notebooks with Static Analysis. In 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE Computer Society, Los Alamitos, CA, USA, 391–401. https://doi.org/10.1109/SANER56733.2023.00044

Duc Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta. 2020. Towards Using Source Code
Repositories to Identify Software Supply Chain Attacks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY, USA,
2093–2095. https://doi.org/10.1145/3372297.3420015

Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restoring Execution Environments of Jupyter Notebooks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1622–1633. https://doi.org/10.1109/ICSE43902.2021.00144

Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang, Hai Yu, Shing-Chi Cheung, Chang Xu, and
Zhiliang Zhu. 2020. Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for
Computing Machinery, New York, NY, USA, 125–135. https://doi.org/10.1145/3377811.3380426

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, and Laurie Williams. 2022.
What are weak links in the npm supply chain?. In Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice (Pittsburgh, Pennsylvania) (ICSE-SEIP ’22). Association for Computing Machinery, New
York, NY, USA, 331–340. https://doi.org/10.1145/3510457.3513044

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1109/CAIN58948.2023.00016
https://doi.org/10.1145/3468264.3468589
https://doi.org/10.1145/3468264.3468589
https://doi.org/10.1145/3546948
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1007/s10664-020-09914-8
https://doi.org/10.1109/MS.2012.38
https://doi.org/10.1109/MS.2012.38
https://api.semanticscholar.org/CorpusID:51951699
https://api.semanticscholar.org/CorpusID:51951699
https://www.usenix.org/conference/usenixsecurity23/presentation/staicu
https://www.usenix.org/conference/usenixsecurity23/presentation/staicu
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1007/s10664-022-10195-6
https://doi.org/10.1007/s10664-022-10195-6
https://doi.org/10.1145/2642937.2643013
https://doi.org/10.1016/j.infsof.2018.10.009
https://doi.org/10.1109/SANER56733.2023.00044
https://doi.org/10.1145/3372297.3420015
https://doi.org/10.1109/ICSE43902.2021.00144
https://doi.org/10.1145/3377811.3380426
https://doi.org/10.1145/3510457.3513044


Pr
ep
rin

t
1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Bloat beneath Python’s Scales: A Fine-Grained Inter-Project Dependency Analysis 25

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel. 2019. Small World with High Risks: A
Study of Security Threats in the npm Ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 995–1010. https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

	Abstract
	1 Introduction
	2 Methodology
	2.1 Definition of Bloated Dependency Code
	2.2 Project Selection and Dependency Resolution
	2.3 Construction of Fine-Grained Project Dependency Graph
	2.4 Analyzing Reachability Results

	3 Results
	3.1 RQ1: How prevalent is bloated dependency code in the PyPI ecosystem?
	3.2 RQ2: What is the relation between bloated dependency code and software vulnerabilities?
	3.3 RQ3: What are the main causes of bloated PyPI dependencies?
	3.4 RQ4: To what extent are developers willing to remove bloated PyPI dependencies?

	4 Key Takeaways and Suggestions
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	8 Data Availability
	References

