Broken Agreement: The Evolution of Solidity Error Handling

Charalambos Mitropoulos* Maria Kechagia® Chrysostomos Maschas
Technical University of Crete University College London (UCL) National Infrastructures for Research
Greece United Kingdom and Technology (GRNET)
cmitropoulos@tuc.gr m.kechagia@ucl.ac.uk Greece

Sotiris Ioannidis
Technical University of Crete
Greece
sioannidis@tuc.gr

ABSTRACT

Background. A smart contract is a computer program enclosing
the terms of a legal agreement between two or more parties which
is automatically verified and executed via a computer network
called blockchain. Once a smart contract transaction is completed
the blockchain is updated and the transaction cannot be changed
anymore. This implies that any error codified in the smart contract
program cannot be rectified. Therefore, it is of vital importance
that developers of smart contracts properly exploit error handling
to prevent issues during and after the contract execution. Existing
programming languages for smart contracts, support developers
in this task by providing a set of Error Handling (EH) features.
However, it is unclear the extent to which developers effectively
use EH in practice. Aims. Our work aims to fill this gap by em-
pirically investigating the state of practice on the adoption of EH
features of one of the most popular programming languages for
smart contracts, namely Solidity. Method. We empirically analyse
the usage of EH features in 283K unique open-source Solidity smart
contracts for the Ethereum blockchain. Results. Our analysis of
the documentation of the different versions of Solidity coupled
with the empirical evaluation of the EH uses and misuses found
in real-word smart contracts, indicate that, among other things,
Solidity EH features have been changing frequently across versions,
and that the adoption of most of the Solidity EH features has been
limited in practice. However, we observe an upward trend in the
usage of the require EH feature, which is specifically designed for
smart contract development. Conclusions. The insights from our
study could help developers improve their EH practice as well as
designers of smart contract programming languages to equip their
language with appropriate EH features.

“The first two authors contributed equally to this work.

Authors’ addresses: Charalambos Mitropoulos, Technical University of Crete, Greece,
cmitropoulos@tuc.gr; Maria Kechagia, University College London (UCL), United King-
dom, m.kechagia@ucl.ac.uk; Chrysostomos Maschas, National Infrastructures for
Research and Technology (GRNET), Greece, chrysom@noc.grnet.gr; Sotiris Ioannidis,
Technical University of Crete, Greece, sioannidis@tuc.gr; Federica Sarro, University
College London (UCL), United Kingdom, f.sarro@ucl.ac.uk; Dimitris Mitropoulos,
University of Athens (UoA), Greece, dimitro@ba.uoa.gr.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Federica Sarro
University College London (UCL)
United Kingdom
f.sarro@ucl.ac.uk

chrysom@noc.grnet.gr

Dimitris Mitropoulos
University of Athens (UoA)
Greece
dimitro@ba.uoa.gr

CCS CONCEPTS

« Software and its engineering — Error handling and recov-
ery; Software evolution.

KEYWORDS

Solidity, smart contracts, error handling, software evolution

ACM Reference Format:

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris
Toannidis, Federica Sarro, and Dimitris Mitropoulos. 2018. Broken Agree-
ment: The Evolution of Solidity Error Handling. Proc. ACM Program. Lang.
1, CONF, Article 1 (January 2018), 12 pages.

1 INTRODUCTION

Smart contracts [19, 30, 48] are computer programs stored on a
blockchain (i.e., a system maintaining a record of transactions across
computers linked in a peer-to-peer network [40, 44]) that can be
used for automating the execution of transactions between different
parties. Examples of transactions include triggering a payment or a
service delivery, registering a vehicle, or issuing a ticket.

Solidity [17] is a recent object-oriented programming language,
released in 2014, for developing smart contracts that run on
blockchain platforms such as Ethereum [14]. Ethereum is one of
the largest and most popular decentralised platforms where 1M
transactions take place everyday [13, 25].

As general-purpose programming languages provide the develop-
ers with some sort of error-handling to help them handle unexpected
errors that may manifest at run-time [45, 59, 64, 66], Solidity, also,
provides a number of error-handling (EH) features [12], e.g., to han-
dle calls to other smart contracts, which can be exposed to potential
runtime errors e.g., attacks due to a vulnerability. Such features
include standards like try—-catch and assert, as well as features
developed specifically for Solidity, i.e., require and revert.

Despite Solidity provide several EH features, it seems that de-
velopers do not fully understand how they work and often neglect
their usage[41]. The Nomad bridge attack [1], which costed millions
of dollars, is just one of the most recent examples of how a correct
usage of EH features can prevent critical financial losses. In fact,
this attack was due to a missing check for a zero address (0x00).
Without this check, the contract would be marked a zero address
as a valid address for incoming messages. Thus, attackers were
able to perform malicious, yet valid transactions by using the 9x00
address as a stepping stone. The Nomad bridge attack could have

https://doi.org/

ESEM 2024, October 2024, Barcelona, Spain

been avoided if the developers had used the require EH feature
provided by Solidity (as we will explain later on, require can be
used to verify external inputs before execution).

Amann et al. [20, 60] consider the coding situation where explicit
error handling is missed (similar to the case of the Nomad attack),
as an EH misuse i.e., a violation of the specification usage of a
programming language’s element, e.g., an error-handling feature.

Due to the serious financial and legal implications of errors in the
program logic of smart contracts (such as missing error handling),
the reliable and secure execution of a smart contract through the
correct usage of EH features should be a top priority for developers
of Solidity smart contracts.

Even though there are several studies that examine the EH
usage and its impact for general-purposes programming lan-
guages [23, 24, 43, 50, 52, 59], this is not the case for Solidity. More-
over, Solidity is a relatively new programming language, and, as
such, its characteristics and features evolve on a daily basis. Thus,
focusing on the evolution of its EH features and corresponding
documentation would provide Solidity’s designers and smart con-
tract’s developers with important insights. While there are several
empirical studies related to Solidity, focusing, for instance, on the
use of inline assembly [28], the performance of program-analysis
tools [34], code reuse [32], and library misuses [41], to the best
of our knowledge, there is no empirical study that examines the
evolution of Solidity EH features.

Our work aims to fill this gap: We carry out the first large-scale
empirical study (involving 283K unique open-source Solidity smart
contracts) aiming at understanding how developers use Solidity EH
features over time and making suggestions to facilitate the features’
correct design and use. Specifically, we study the evolution of the
provisioning of EH features as new Solidity versions are released
(RQ1), the frequency and category of EH Solidity features used
by developers in their contracts (RQ2), and how this usage evolve
over time (RQ3). Moreover, we analyse whether developers misuse
EH Solidity features, categorise potential misuses, examine their
impact, and quantify their overall occurrence (RQ4) and evolution
over time (RQ5).

Overall, our findings show that substantial changes in Solid-
ity EH features include the deprecation of throw early on, and
the introduction of require and try-catch at different points in
time (RQ1). The most used EH feature is require (83.15%), while
the least used EH feature is assert (3.82%) (RQ2). Furthermore,
require has the highest usage increase across Solidity versions and
over the years. When try—catch was introduced in Solidity, the
number of its usage increased, instantly, becoming equal to those
of revert and assert (RQ3). Popular misuses involve missing EH
features to check if either an address type (i.e., the address of
a block) is valid, or if the call performed to an external contract
was successful (RQ4). Moreover, according to our analysis of the
Solidity documentation, we found that it does not contain enough
examples illustrating the different coding situations where EH fea-
tures should be used. This means that the Solidity documentation
does not clarify the actual impact in the case of a misuse. Further-
more, we observe that the highest number of misuses over time
involves the absence of EH for validating calls to external contracts,
and checking the reliability of blockchain addresses (RQ5). We also

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris loannidis, Federica Sarro, and Dimitris Mitropoulos

observe a positive increase, over time, in the adoption of some spe-
cific EH features. Notably, an upward trend (> 60%) in the usage of
Solidity-tailored EH features (i.e., require) suggests that designers
of modern programming languages may want to consider devising
EH features that are more specific to each language’s purposes.

In summary, we present the first empirical study analysing both
quantitative and qualitative aspects of the usage of Error Handling
in Solidity over time, by analysing the largest number of real-world
smart contracts to date and making the following contributions:
Evolution. We identify significant changes in EH features offered
by Solidity over time and the corresponding developers’ uptake
and usage of such features.

Misuses. We identify seven categories of misuses regarding So-
lidity EH, providing representative examples, and discussing their
implications for the users.

Suggestions. We suggest improvements for Solidity EH features
and their documentation, based on the empirical evidence sought.
Open Science. We make publicly available the dataset we curated
and the tool we created to analyse the data (SoLBENcH) [2], in order
to allow for replication and extension of our study.

2 BACKGROUND

Error-Handling in Solidity. Solidity is based on solc, the stan-
dard Solidity compiler, which counts ~100 releases since 2015 [17].
solc offers several mechanisms including EH features and the
SMTCHECKER, a built-in formal verification module [16].

According to Solidity’s API reference documentation (hereafter,
Solidity documentation) [12],! Solidity uses state-reverting excep-
tions to handle potential runtime errors. When an exception mani-
fests in a sub-call, it is automatically propagated unless it is caught
via error handling. Solidity offers the EH features presented in the
following paragraphs.

Two EH features tailored to Solidity are require and revert.
require checks for programming conditions, and throws an excep-
tion when particular conditions are not met. revert has the same
semantics as the throw keyword used in older Solidity versions
(it was removed in version 0.5.0 as we will see later in the paper),
and in other programming languages such as Java [3]. If revert
is triggered, an exception is thrown, along with the return of gas
(i.e., the fee required to perform a transaction on the Ethereum
blockchain), and reverts to its original state.

solc also supports two well-known EH features inspired by
other programming languages, such as Java, namely: try-catch
and assert. A try statement allows developers to define a block
of Solidity code to be tested for errors, while it is being executed.
catch allows the definition of a block of code to be executed if the
error that occurred was in the corresponding try block. assert can
be employed to check for specific conditions and if the conditions
are not met it throws an exception.

Error-Handling Misuses. The usage specification of the Solidity
EH features, i.e., when and how EH features should be used, is
defined in the Solidity documentation. An EH misuse occurs when
the developers of smart contracts violate the usage specification
of the EH features. Such misuses may affect the reliable execution

'We refer to Solidity versions < ©.8.19 since ©.8.19 is the latest version found
available at the time of our study.

Broken Agreement: The Evolution of Solidity Error Handling

and the security of a smart contract. Specifically, if developers
ignore the Solidity EH features, particular exceptions can manifest
causing detrimental effects. EH misuses may also introduce security
vulnerabilities [4, 5, 29, 55] that can lead even to a DoS (Denial of
Service) attack [6]. For instance, recall the Nomad Bridge attack [1]
(discussed in Section 1) that led to a $190M loss. This attack was
based on a missing address-zero check, which should have been
performed via error handling.

According to a recent taxonomy of API misuses [20],? there are
two categories referring to EH misuses: (1) missing usage of error
handling and (2) redundant usage of error handling. In this study,
we examine coding situations where error handling is missing
(hereafter, EH misuses). Notably, the aforementioned work indicates
that the absence of EH usage can have a greater negative impact
on the functionality of a program than the redundant EH usage.
Even though the work of Amman et al. [20] refers to API-misuse
categories for Java APIs, we argue that the identified categories are
generic enough to be applied to APIs for different programming
languages, including Solidity.

Listing 1 presents a code excerpt, where EH is missing, i.e., the
developer should have used require to check that the account
(see the first argument in line 2) is not a zero address [12]. Recall
that a similar check was missing in the Nomad bridge attack [1].

Listing 1: Missing zero-address check via require.

//contract ScalpexToken 1
function _burn(address account, uint256 amount) internal virtual { 2
_beforeTokenTransfer(account, address(@), amount); 3

4

_balances[account] = _balances[account].sub(amount, "ERC20:burn amount exceeds balance")

_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(@), amount); 6

} 7

@

3 EMPIRICAL STUDY DESIGN

3.1 Research Questions

Our work aims at investigating two main aspects of Solidity EH:
How the EH features have been provided by Solidity over time, and
how the EH features have been used by developers in practice.

Our first research question focuses on the manual analysis of the
Solidity documentation of 102 releases to investigate the provision-
ing of EH features by Solidity and their characteristics over time,
including observing newly proposed or deprecated EH features.
Thus, we ask: RQ1: How do the provisioning of EH features
evolve as new Solidity versions are released?

Next, we investigate two research questions that aim at em-
pirically investigating the extent to which developers use error-
handling in Solidity smart contracts that are deployed in production
by using the largest real-word Solidity dataset to date.

We identify the popularity of all EH features. For the ones that
are scarcely used by developers, we investigate the possible reasons

2An Application Programming Interface (ap1) can be considered as a publicly available
bundle of interfaces, classes, and methods, that client programs can call or implement.
An API usage refers to any call of one or more methods of either old or new versions
of an APL ie., API = [m]1,...,mk] [39]. An API misuse is a violation of the usage
specification of that API.

ESEM 2024, October 2024, Barcelona, Spain

+ (@~ Data Curation (@7 Analysis T TTTTTTTTTC ‘

' 3 Quantitative
Contract <—|11_L Measure Error
" Handling Features

| Metadata
! 1 | Extract Contracts | ! | '
e | B | (o) |
: Vo T

' o H Solidity km ;
' Dataset by Element Documentation '
' Chaliasos etal. [29] | ! | | |

H [Elements include } Vo PExlracl Error Handling Categories l
categories, usages | -1 -
and mi \

—
—

Figure 1: Our method to analyse the evolution of Solidity EH.

for it. To this end we ask: RQ2: How frequently do developers
use each of the Solidity EH features?

Once we assess the use of Solidity EH features in practice, we dive
deeper to identify trends and observe error-handling usages over
time, e.g. before and after the introduction of important Solidity
modules. This analysis will enable us, inter-alia, to understand
whether developers follow the upgrades introduced in new Solidity
versions and how these changes impact the usage of EH features.
Thus we ask: RQ3: How often do developers use Solidity EH
features over time?

We also aim to elicit and categorise existing EH misuses and
their potential impact. Furthermore, we intend to examine how
often developers fail to use EH features when they should. Based
on our results, we will be able to make suggestions to support
developers in the correct usage of EH features. Thus we ask: RQ4:
What are the types of Solidity EH misuses and what is the
overall frequency of each type?

Finally we focus on the evolution of EH misuses over time as this
would enable us to identify potential trends (e.g., a sudden increase)
and correlate them with the corresponding Solidity release and
given EH feature. This motivates our last question: RQ5: How do
Solidity EH misuses evolve?

3.2 Methodology Overview

To address the research questions presented in Section 3.1, we carry
out a large-scale empirical study consisting of three main steps:
@ collecting raw smart contract data; (2) processing this data and
consolidating it together with a dataset publicly released in previous
work; @) designing and carrying out a quantitative analysis of smart
contract usage over time as well as a qualitative analysis of Solidity
documentation related to the various released versions, and the
formulation of heuristics needed to identify EH uses and misuses.
Figure 1 gives an overview of our methodology.

The first two steps are necessary to curate the largest dataset of
Solidity smart contract to date, covering a wide period of time (i.e.,
from August 2015 to April 2023). We discuss the details of our data
collection and consolidation in Section 3.3.

To answer RQ1, we thoroughly study the documentation of
the various Solidity releases to extract information about error-
handling, e.g., related code constructs, categories, and how devel-
opers can use it. Furthermore, through this qualitative analysis, we
form the basis for answering the other four research questions by
examining correct EH usages or lack thereof. We describe the pro-
tocol we follow to study the Solidity documentation in Section 3.4.

ESEM 2024, October 2024, Barcelona, Spain

Furthermore, we build on the findings of our qualitative analysis
to categorise EH usages in Solidity and to devise a set of heuris-
tics, which are based on an extendable grammar. We describe the
inferred EH categories and heuristics in Sections 3.5 and 3.6, re-
spectively. To answer RQ2, we applied these heuristic rules to our
dataset and calculated the frequencies of EH usage categories.

To answer RQ3, we examined the evolution of EH usages in
Solidity across years, across versions, and the growth rate. We also
analyse the extent to which developers respond to the evolution of
EH features over time.

In order to answer RQ4 and RQ5, we use the heuristics to detect
EH misuses (as we explain in Section 3.6). Moreover, we identify
the potential effects of such misuses by exploiting the Solidity
documentation. This analysis allowed us to examine the frequencies
of EH misuses and highlight their potential impact (RQ4), and the
EH misuse trends and growths over time (RQ5).

For those RQs that are related to the evolution over time, i.e., RQ3
and RQ5, we also use statistical inference tests to check whether
the results obtained are statistically significant. Specifically, we use
the Wilcoxon test [33] since our data is not normally distributed
and set the significance level o = 0.05%.

3.3 Dataset

We curated a dataset containing 283K unique smart contracts. This
dataset combines the most recent and largest public dataset of
Solidity smart contracts collected from August 2015 to March 2022
by Chaliasos et al. [28] and the smart contracts that we collected
from April 2022 to April 2023 via Etherscan REST APIL

Data Collection via Etherscan REST API. For the data collec-
tion phase, we use the REST API of Etherscan [15], a well-established
block explorer for Ethereum.> We identify smart contracts from
Etherscan for a specific period of time, from April 2022 to April
2023. To do so, first, we examine raw data containing all the ad-
dresses of verified contracts. Then, we store the addresses of such
contracts and download the corresponding smart contracts. Note
that not all developers make their smart contracts’ source code
publicly available. For our analysis, we only retain open-source
smart contracts. Further, when a smart contract is downloaded, it
is accompanied by various metadata and additional files (including
dates, information about the authors and more). We discard such
files which are irrelevant to our study, and store only the smart
contract’s source code. By applying the aforementioned workflow
we are able to gather contracts that were published after the study
of Chaliasos et al. [28].

Curation. From both datasets we made sure to filter out empty
smart contracts (i.e., contracts without source code) as they do not
provide meaningful information for our study, and repeated source
code files due to code reuse. We found that ~ 1 million smart con-
tracts from the data collected by Chaliasos et al. [28] were empty,
and therefore we excluded them from our analysis. Note that our
data do not contain any empty contract as they were automatically
excluded during the data collection phase. We observe that reused
code can stem from two sources: () imported third-party libraries
and (2) contracts that include other pre-existing contracts. In both

3To download the source code of the smart contracts using the Etherscan REST API
we had to generate an an API key from Etherscan.

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris loannidis, Federica Sarro, and Dimitris Mitropoulos

Table 1: Descriptive statistics of our dataset.

Start Block 47,205 (7th of August, 2015)
End Block 16,993,877 (8th of April, 2023)
Total Source files 2M
Total Unique Source files 1.7M
Total Number of Functions 168M
Total Number of Modifiers 4.03M
Total Number of Constructors 672K
Total Unique Smart Contracts 283K
Contracts with at least one EH feature 215.8K
Average LOC per .sol file 105.1
LOC 51.2M

cases, we automatically detect reused code through an automated
process. For (), we detect whether the code of these libraries is
incorporated into the code of a contract or it is included in the
directory of the contracts. Consider that we analyse the library
code only the first time we detect it. Namely, if the library is already
present as an individual file in the directory, and we have already
reviewed it, we skip it. For 2), we detect whether a contract previ-
ously examined is included in the directory of the current contract
under examination. If so, then, we skip it. Using the above proce-
dures, we effectively eliminated 300K files of reused code across
both datasets.

All smart contracts use solc* versions from v@.1.2 to v@.8.19.
Since the range of solc versions which are compatible with a given
smart contract are defined in the first lines of the contract itself
by the keyword (pragma solidity <version>), we detect solc
versions by examining these lines. Also, every smart contract has
a timestamp, which indicates when the contract was actually de-
ployed on Etherscan. This timestamp is stored in the contract’s
meta-data under the keyword txhash. This way, we can match
the contracts to a given Solidity release. We consider Solidity ver-
sions from v@. 1.2 on-wards, because earlier versions do not have
an accompanying documentation. Version v@.8.19 was the latest
available at the time of our study.

Description. Table 1 shows the descriptive statistics of our final
dataset, which contains a total of 283K unique smart contracts
deployed between August 2015 and April 2023, for a total of 1.7
million unique source code files. It is worth noting that a single
smart contract may encompass multiple source files with a .sol
extension. On average, a contract consists of around 7.25 .sol files,
with a median value of 6 files. Additionally, the average lines of code
per .sol file is approximately 105.1. In total, the dataset contains
approximately 283,000 unique smart contracts and 76% of these
contracts include at least one EH feature.

3.4 Documentation Analysis Protocol

An important part of our methododology involves the analysis of
the Solidity documentation. To this end, two authors independently
examined: (@ the documentation of the latest Solidity version at
the time of our study (i.e., v@.8.19) to identify elements such as
usage categories for the EH features, and (b) the documentation
of each solc version from v@.1.2 to v@.8.19 to record changes

4We use solc or Solidity, interchangeably, to refer to the versions considered in our
study. Solidity is based on solc, and, thus, solc or Solidity follow the same versions.

Broken Agreement: The Evolution of Solidity Error Handling

related to EH features.® Through @), we are able to answer RQ2 and
RQ3 to RQ5. Furthermore, (B helps us to answer RQ1, but it also
contributes to the results of other RQs, as described in Section 4.

The authors discussed their observations and findings until they
reached a consensus. The procedure was repeated three times. Dur-
ing these iterations, the authors revisited and updated their ob-
servations. Overall, there was no disagreement between the two
authors that examined the documentation. Moreover, the two au-
thors presented their findings to two additional authors that ratified
the resulting findings.

3.5 Error-Handling Usage Categories

Studying the Solidity documentation (v0.8.19, i.e., the latest avail-
able version at the time of our study) we identify the EH usage
categories as described in the following paragraphs. The descrip-
tion of the EH features is based on Solidity documentation.® We
analyse the use of the different EH features over time in Section 4.1.

require can be used to evaluate (1) function arguments and (2)
external calls that are used to call functions from other contracts.
Consider the code excerpt in Listing 2. The setTrustedMarket
function calls the external function getMarketOwner from the con-
tract marketRegistry. In this case, require is used to test if the
call works as it is supposed to.

Listing 2: Use of require in external call.

//contract: TellerV2Context 1

function setTrustedMarket(uint256 _mId, address _forwarder) external { 2

require(marketRegistry.getMarketOwner(_mId) == _Sender(), "Caller must be the 3
marketowner");

3} 4

try—catch can be used to: (1) catch and handle failures from ex-
ternal calls, in the same way as require does, and (2) evaluate the
creation of external contracts. The last case occurs when a contract
creates an external contract and the developer has to be sure that
the creation is done correctly.

revert can be called as (1) a function and as (2) a statement to
throw an error. Consider the code excerpt in Listing 3. In that case,
the developer defines its own error function called OnlyOwner ().
If the if statement is true, the revert function will be called
providing an error message defined by the developer. In the same
manner, in the case of a revert statement, the error message is
provided inside quoted marks: revert("...").

Listing 3: Use of revert with custom error.

//contract: Strategy
error OnlyOwner();
function updateOperatorFilterRegistryAddress(address newRegistry) public virtual {
if (msg.sender != owner()) {
revert OnlyOwner();
3}
¥

O N I O

assert can be used to check specific coding situations listed
in the Solidity documentation [7]. Each case has a corresponding

5v0.1.2 is the first solc release that includes meaningful documentation files (i.e.,
previous versions incorporated insufficient material, which would not lead to consistent
results).

SWe note that in version v@.8.19, the throw EH feature was deprecated. We counted
any if ... throw occurrences, in our dataset, and found that throw is used in a very
small number of contracts (~ 1%). For these reasons, we decided to exclude throw
from our analysis.

ESEM 2024, October 2024, Barcelona, Spain

(u € Usages)y == eh(cfcom(t|f), t|er) | eh(tcomtt) |
eh(topt) | eh(er|t) | eh(arrlcomt) & u
eh(e(t)) | eh(arrpop()) | ehmew cf) |
eh(t com t)

(eh € Features) := require | revert | try | assert

(c € SmartContracts) :=
(f € Functions) u=
(e € EnumType) u=

is the set of available smart contracts
is the set of functions
set of enum types

(er) Error | Panic | CustomError
(arr € arrays) storage | memory
Iy - array length
(t € SolidityTypes) == str | uint | int | bool | address
(0p) u= -]t
(com) = < | <=|>|>=]==|1!1=]|"!

Figure 2: The abstract syntax of the heuristic rules that repre-
sent the usages of the different error-handling (EH) features,
according to the Solidity documentation (v0.8.19).

error code. After analysing all situations, we grouped them into
five categories. The following list mentions the codes of each cat-
egory considered in our study: (1) arithmetic overflow/underflow
(with error code 0x11), (2) division by zero (0x12), (3) array opera-
tions (0x22, 0x31, 0x32, @x41), (4) program logic (0x@1, @x51), and
(5) enum type conversion (0x21). Note, that certain categories can
be identified by the SMTCHECKER starting from compiler version
0.8.7 (see Section 4.1). An example belonging to the enum type
conversion category, involves the code excerpt in Listing 4.

Listing 4: Use of the enum type conversion.

//contract: Hakiro

enum Step { Before, PublicSale, WhitelistSale, SoldOut, Reveal}

function setStep(uint _step) external onlyOwner {
assert(sellingStep = Step(_step));

Gos W o

3}

Here, the developer attempts to convert a uint value named _step,
into the corresponding Step enum value. To ensure that the process
is done correctly, the assert function is called. Consider that the
0x00 code (i.e., “generic compiler inserted panics”) is not assigned to
any category, because it is too generic to classify.

3.6 Heuristic Rules

To automatically detect EH usages we define a set of heuristic rules.
The rules are based on the aforementioned usage categorisation
(see Section 3.5) and the examination of real-world Solidity smart
contracts containing EH features. Furthermore, the rules are generic
and can be easily expanded if a new pattern appears in newer
Solidity versions. Similarly, one can remove deprecated patterns
that Solidity developers may mark as obsolete in the future. Note
that our heuristic rules can be also used to identify EH misuses,
because the denial of a heuristic indicates a potential misuse.
Figure 2, presents the set of our heuristic rules. Each ele-
ment of the Usages set, requires an EH feature from the eh set:
{require, revert, try, assert}. When we detect one of the Usages
patterns in a smart contract that exists in our dataset, it means
that we identify a (correct) usage of an EH feature. Every rule in

ESEM 2024, October 2024, Barcelona, Spain

Usages corresponds to a usage category presented in Section 3.5.
Consider the rule: eh(t com t). This can lead to the detection of two
patterns of a program logic check, namely: require(a >= b) |
assert(c == d). Furthermore, through eh(t op t), we can detect
both (1) overflows/underflows and (2) division by zero checks (e.g.,
assert(a * b) |assert(a / b).

As an example, consider Listing 2, where an external call takes
place. In this case, the heuristic rule that checks for the correct
usage of the require feature is the following: eh(c.fcom (t] f), t|
er). Specifically, the rule searches for a pattern where the output of
an external function c.f (getMarkeOwner in our case) is compared
to (com) either the output of another function, f (_Sender() in
our example), or another type, ¢ (e.g., a message in a string). After
the comparison, another object (t) is expected, i.e., the exception
thrown by the feature (in our case a string).

A misuse appears when a heuristic rule is violated. Con-
sider a situation where an external function call (c.f) such as
marketRegistry.getMarketOwner in Listing 2, is detected. In this
case. if require is not used to check the call, a misuse is identified.
In our supplementary material, we provide more details regarding
the rules we use to identify misuses. To implement the heuristic
rules, we use regular expressions to detect EH patterns. To validate
these rules, we developed a script [8] that initially employs the
built-in AST generator of the Solidity compiler (solc) to produce
the AST for a specified smart contract, and subsequently identifies
the EH features within the AST of that smart contract. By doing
so, we can cross-check whether the EH patterns detected by the
heuristic rules align with those from the AST of the smart contract.

4 EMPIRICAL STUDY RESULTS

4.1 ROQ1: Evolution of EH Features Provided by
Solidity

Since Solidity inception, the total number of releases of the Solidity
compiler solc is 102 (until v@. 8.19). Based on our manual analysis
of the 102 versions (see Section 3.4) we found that only 13 releases
of solc include a substantial change in at least an EH feature. We
also observed that median and average number of days between
two releases is 28.50 and is 27.91, respectively. While, the median
number of days between two releases that include a change in EH
is 112.5 and the average is 179.08.

Table 2 summarises the changes to Solidity EH features intro-
duced in each of the 13 releases, as unveiled by our manual anal-
ysis. We observe that up to v@.4.10, there are no EH features,
except for the throw keyword, which was subsequently deprecated
in v@.4.13 [18]. At the same time, three new EH features were
introduced, namely, require, revert, and assert. Subsequently,
v0.4.22 was released with a number of features that enable de-
velopers to specify messages in require and revert. This version
was also equipped for the first time with the SMTCHECKER, a formal
verification module of solc, which allows developers to automati-
cally detect, for instance, arithmetic overflows at compile time. The
SMTCHECKER could be enabled by developers in their contract via
the pragma keyword. In v0.6.9, try—catch was introduced, and
from v@.6.9 onwards, the SMTCHECKER was updated to check for
array-related actions, overflows and underflows. It is worth noting
that until then, such checks could be performed via require and

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris loannidis, Federica Sarro, and Dimitris Mitropoulos

Table 2: RQ1. Error-handling (EH) changes across versions.

Version ‘ Date ‘ EH Change

0.1.3 | Sep 23,2015 | Introduction of throw
0.4.0 | Sep 8, 2016 Specification of the compiler version via pragma
Introduction of require(condition) and assert(condition)
0.4.10 | Mar 15,2017 | Suppport of revert() as an OPcode
to abort with rolling back, but not consuming all gas.
0.4.13 | Jul 6, 2017 Deprecation of throw() due to require(), assert(), revert()
0.4.16 | Aug 24, 2017 | Automated support for checking overflows and ASSERT
0.4.22 | Apr 17,2018 | Specification of Error in require and revert
0.6.0 | Dec 18,2019 | Introduction of try-catch
0.6.9 | Jun 4, 2020 SMTCHECKER supports require and assert
0.7.2 | Sep 28,2020 | SMTCHECKER supports revert()
0.8.0 | Dec 16,2020 | Introduction of Panic(uint) and Error(string)
0.8.1 | Jan 27,2021 | Catch and decode Panic(uint) and Error(string) in try-catch
0.8.4 | Apr 21,2021 | Start deprecating pragma experimental SMTCHECKER
Enabling SMTCHECKER to check for overflows / underflows
Running SMTCHECKER by default

0.8.7 | Aug 11, 2021

Table 3: RQ2. Appearances (#) and frequencies (%) of error-
handling (EH) usage categories.

EH Features ‘ Usage Categories ‘ (#) ‘ (%) | Total (%)
require function arguments 38,059 | 56.35 83.15
q external calls 29,541 | 43.75 :

external calls 4,135 | 70.25

try-catch external contract creation 1,756 | 29.83 7.25
functions 3,821 | 81.22

t 5.79
Y statements 885 | 18.88
overflow / underflow 1,217 | 46.93
division by zero 984 | 37.94

assert array perations 218 | 843 3.82
program logic 107 | 4.12
enum type conversion 67 | 2.58

assert. v@.8.0 introduced two main types of exceptions: Panic
and Error. Panic exceptions are created by the compiler in certain
situations [7], or they can be triggered by the assert function. An
Error exception can be generated by either require or revert.
Such checks are used to ensure valid conditions that cannot be
detected until execution time. Furthermore, from v@.8.1 onwards,
developers were given the ability to use Panic and Error inside
a catch statement. In v@.8.4 the SMTCHECKER was enabled by
default, and since v@. 8.7 several evaluations such as division by
zero and arithmetic overflows are performed at compiler level.

Answer to RQ1: Substantial changes in Solidity EH fea-
tures include the deprecation of throw, the introduction of
require and try-catch, as well as the introduction of the
SMTCHECKER that currently supports checks performed
via assert. On average, changes in EH features happen
once or twice per year at least.

4.2 ROQ2: Frequencies of EH Usages

Table 3 shows, for each EH feature, the frequency of each usage
category identified. We observe that the most used EH feature is
require (83.15%). Notably, require is introduced specifically for
Solidity and is not supported by other programming languages. The
remaining EH features, assert, revert, and try-catch, are less
used, i.e., < 10% per feature.

We also analyse the context that each EH feature is used for
(i.e., usage category). require is more used for evaluating function

of EH usage

Broken Agreement: The Evolution of Solidity Error Handling

Error Handling Usage Over Versions

14000 == Error Handling Features Sum
= Require
Assert
12000 wmw Try-catch
mmm Revert

10000

8000

6000

4000

2000

!I‘!IMH

snene

S 9omam Gunen <ng

3

Solidity Compiler Versions

Figure 3: RQ3. Error-handling (EH) usage across versions.

arguments (56.3%) than for external calls (43.7%). try-catch is
mostly used to handle a potential failure in an external call (70.2%)
and less used to check whether the creation of an external contract
is successful or not. Furthermore, revert function is utilised more
(81.2%) than the revert statement (18.8%). This is meaningful be-
cause developers can write specific messages (e.g., “Not enough
funds”) through revert functions, and facilitate debugging. Finally,
assert is mostly used to identify potential arithmetic overflows
and underflows (46.93%) and division by zero (37.94%). By contrast,
assert is rarely used to check for valid array operations (8.43%), ex-
amine enum type conversions (2.58%), or evaluate program-specific
conditions (4.12%).

Answer to RQ2: The most used EH feature is require
(83.15%), while the least used is assert (3.82%). try-catch
is mostly used to evaluate external calls (>70%). require
is slightly more used for evaluating function arguments
(56.3%) than for external calls (43.7%). assert is mostly used
for checking overflows / underflows (>35%) and division by
zero (>30%). revert is mostly used as a function (>80%).

4.3 RQ3: Evolution of EH Usages In Practice

Figure 3 illustrates how many times each EH feature is used across
the different Solidity versions together with their overall usage. (i.e.,
EH features’ sum). If a smart contract with EH features can be com-
piled with solc > v@.4.10, then we count each detected feature
in this specific contract, for the whole range of these versions.

Overall, our findings indicate that developers seem to use all
features more as time goes by. In addition, require is the most
utilized EH feature across all Solidity versions. An interesting ob-
servation involves try—catch. The feature is introduced in v@.6.0
(see Table 2), and its usage is gradually increasing until v@.7.4
(appearing 1,275 times in this version) and eventually takes the lead
from all the other EH features, except for require.

Figure 4, illustrates the frequencies of EH feature usages across
time, per quarter. Overall, require always appears at least 1,000
times more than revert and assert. A sharp increase of the
require usage (2,500 times) occurs from September 2018 to June
2019. The increase coincides with the release of v0.4.22, where So-
lidity provides developers with the ability to specify error messages
in require (see Table 2). Furthermore, revert is more utilised than

ESEM 2024, October 2024, Barcelona, Spain

14000 -

- Appearances of require A
- Appearances of assert o

- Appearances of try-catch -
- Appearances of revert I ad

12000~

e

10000 -

8000 ~ -

of EH

6000 - -

Figure 4: RQ3. Error-handling (EH) usage across years.

Table 4: RQ3. Error-handling (EH) usage growth rates.

EH feature ‘ Min ‘ Max ‘ Mean ‘ Median ‘ St. Dev.

require 0.163 | 3.938 1.894 2.085 1.187
try-catch | 0.162 | 1.037 | 0.333 0.162 0.378
revert 0.220 | 0.927 | 0.513 0.490 0.224
assert 0.504 | 1.406 | 0.961 0.989 0.329

assert throughout the timeline. After the introduction of try-
catchinve.6.0,in 2019 (see Table 2), try—-catch counterbalances
the other two EH features, i.e., revert and assert. This happens
from September 2019 to March 2020. In June 2020, the usage of try-
catch surpasses the usage of revert and assert, respectively. The
lead becomes more obvious in January 2021, when Solidity v0.8.1
is released. A reason behind this may involve a newly introduced
try-catch that provides developers with the ability to specify the
reason for a failure using Panic and Error (see Table 2).

From Table 4 we observe that, on average, the use of require
has the highest increase over time, followed by assert and revert.
The most recent EH feature introduced in Solidity, i.e., try—catch,
presents the lowest, yet increasing, growth rate over time. To check
whether these differences are statistically significant, we use the
Wilcoxon-test [33], since our data is not normally distributed. The
results show that the resulting p-value is below the predetermined
significance level (0.05), in the majority of our tests indicating
significant differences between the pairs compared.

Answer to RQ3: require has the highest increase across
versions and years. From the second half of 2018, require
has a sharp increase, which coincides with the release of
v0.4.22, where developers can specify error messages in
require and revert. With the introduction of try-catch,
in v@. 6.9, instantly, its usages become equal to those of
revert and assert, surpassing them since June 2021.

4.4 RQ4: EH Misuses: Categories and
Frequencies

Table 5 categorises EH misuses providing corresponding descrip-
tions, the total cases where EH should have been used, and the

ESEM 2024, October 2024, Barcelona, Spain

number of misuses (i.e., missing EH) for each category. Note that
our current approach strictly considers cases where explicit error
handling is missing as misuses. We opt for this design option since
this is the first empirical study that attempts to shed light on how
much do developers consider Solidity’s documentation, regarding
the specification of the usages of EH features, and developers’ will-
ingness to use error handling; even in cases where implicit error
handling (i.e., automatic transaction reversion) would be adequate
e.g., in the case of an ECALL or ECON misuse or error handling would
be done by the SMTCHECKER (starting from compiler v@.8.7) re-
garding misuses relevant to assert. In the following paragraphs,
we discuss in detail the misuse categories we identify.

External Call (ECaLL). When a smart contract performs a trans-
action, it usually makes calls to external contracts. According to the
documentation, such calls should be be verified by developers using
EH features such as require or try-catch, otherwise, potential
problems may occur. For instance, if developers ignore checking
whether an external call (e.g., someAddress.call();) can return
a zero address, then the call may return some results that can
modify the state of the caller contract in an unexpected manner.
Examining our dataset, we found 110,655 external calls. For a sig-
nificant number of external calls (63.63%), developers use neither
require nor try—catch. Therefore, those situations represent po-
tential software failures that could happen due to an unchecked
call return value [4]. Furthermore, consider that if an external call
fails, it should be isolated (i.e., via EH), otherwise it could cause a
DoS (Denial of Service) vulnerability [6].

Function Argument of address type (FAA). To perform trans-
actions, contracts use the address type to define the address of
the sender and the recipient. According to the documentation, the
require EH feature should be used to guarantee that the values
of the address type are valid. For example, if the sender sends an
amount to a receiver that has zero address, this amount will be
sent to an account that does not exist and a loss of funds will occur.
To ensure that the value of address is non-zero, developers need to
use require, i.e., require(recipient != address(@),"...");
In our dataset, we detect 31,018 coding situations where the func-
tion argument of address type should be verified by developers.
For 89.43% of those situations, developers do not check if the ad-
dress is not zero using require. Such cases can lead to attacks such
as the the Nomad bridge attack [1] described in Section 2.

External Contract (ECon). In Solidity, developers have the
ability to create new smart contracts within other smart contracts,
using the new keyword. Without using the try—catch EH feature,
the creation of a contract within another contract can lead to soft-
ware failures. Consider a smart contract A that uses a function to
create a new smart contract B. If the deployment process is not done
correctly and encounters an error, B may not be fully initialised,
or might be left in an incomplete state, producing an exception. If
try—catch is not used, the exception remains “uncaught”, leading
to an unexpected behaviour within the smart contract A. Overall,
we identify 1,162 coding situations of external contracts in our
dataset. From those situations, 80.37% do not involve try-catch,
and can potentially cause software failures. Consider that there are
also related situations that a vulnerability can happen due to an
incorrect constructor name [9].

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris loannidis, Federica Sarro, and Dimitris Mitropoulos

Array Allocation (AA). In Solidity, one can deploy a smart con-
tract which allocates a memory array of user-supplied length. Ac-
cording to the documentation, if the length of a new array is not veri-
fied using assert, and the array’s length is invalid, software failures
may occur, including memory corruption [10]. From the 602 situa-
tions where array allocation takes place in our dataset, 66.67% do not
involve assert. We observe that, although SMTCHECKER runs by
default starting from Solidity v@. 8.7, it cannot automatically detect
such cases. Developers must explicitly configure the SMTCHECKER
using command-line options, such as -model-checker-targets
to guide the analysis.

Pop from Array (PA). In Solidity, developers can delete ele-
ments from arrays using the pop function. However, if developers
ignore using assert to test if the array is empty, the contract’s
execution will be stopped unexpectedly. Analysing our dataset, we
found that in 181 coding situations where pop was used to delete
elements from arrays, 90.62% do not use assert, as suggested by
the documentation (for Solidity < v@.8.7).

Division by Zero (DZ). For division by zero, developers should
use assert according to the documentation (again for versions <
v0.8.7). A division by zero can end the execution of the smart
contract unexpectedly. In our dataset, we found 94 cases where
division by zero may occur. However, 79.76% of them do not use
assert. Such situations can be considered as potential exploits [11].

enum Type Conversion (ETC). According to the Solidity’s docu-
mentation, developers should use assert when they try to convert
a value that is too big or negative into an enum type. Consider a
function that has a uint value and tries to convert this value into an
enum value. If the conversion is unsuccessful, there is a possibility
that this value will have a different type. To guarantee that the
conversion will be successful, developers should use assert. In
our dataset, from the 67 coding situations that include enum type
conversions, 89.55% do not check the validity of the conversion.
Despite the automatic execution of SMTCHECKER from Solidity
v@.8.7 and onwards, “enum type conversion” cases could not be
detected automatically by the SMTCHECKER as in the case of AA.

Answer to RQ4: The category with the highest number of
total cases that require error handling is the “external call”
(110,655). However, for “external call” developers use error
handling (63.63%) more than the other categories. The cate-
gories that developers mostly ignore error handling include
“pop from array” (90.62%), “enum type conversion” (89.55%),
and “function argument of address type” (89.43%).

4.5 RQ5: Evolution of EH Misuses In Practice

Figure 5, illustrates how the misuses identified in our dataset evolve
over time, per quarter. In the first quarter of 2017, the number of
“function argument of address type” (FAA) is 926 times higher than
“external call” (ECALL). In June 2017, ECALL’s frequency becomes
higher than FAA’s for the first time. From that point on, both have
a steady increase over time with ECALL leading the way. At the end
(04-2023), the number of ECALL is 31,277 higher than the FAA. The
third most common misuse is “external contract” (ECoN), being
steadily ~ 127% times higher than “array allocation” (AA). Through

Broken Agreement: The Evolution of Solidity Error Handling

ESEM 2024, October 2024, Barcelona, Spain

Table 5: RQ4. Categories of error-handling (EH) misuses, corresponding descriptions, total cases where EH should have been

used, and number of misuses for each category.

Missing EH Category | Category Description | Representative Misuse | Misuse Description Total Missing EH (%) | EH Required
(EH Misuse Category) (Contract in Etherscan) Cases
(#)

External Call (ECALL) Missing EH feature to | IRoutedSwapper Missing require or try-catch for external call | 110,655 70.417(63.63%) | require or
validate a call to an ex- swapper . swapExactInput()) try—-catch
ternal contract

Function Argument of | Missing require to | StreetDawgs Missing require to check from in | 31,018 27,741(89.43%)

address type (FAA) check if an input of an the code fragment address from = require
address type is valid. address(uint160(_packedOwnershipOf (Id))

External Contract (ECon) Missing try to test if | CapsuleFactory A new contract Capsule capsuleCollection | 1,162 934(80.37%)
the external contract is = new Capsule(name, symbol, izl
created correctly tokenURIOwner, isCollection) is cre-

ated without using try to test the correct
creation of the contract

Array Allocation (AA) Missing assert to test | VaultsRegistry Missing assert to test if allVaults.length | 602 401(66.67%)
if the array allocated in address[] memory vaultsArray = new assert
has a valid length address[](allvaults.length); is a valid

number

Pop from Array (PA) Missing assert to test | GenjiMonotagari The function remove(Map storage map, | 181 164(90.62%)
if . pop() is valid address key) that deletes the last key from assert

map. keys does not have an assertion.

Division by Zero (DZ) Missing assert to | ZoomerRethPool In function getRedeemValue(uint256 | 94 75(79.76%)
check if the division is totalBurn) there is not check if the (balance assert
valid / (5000 - totalBurn) is >0

enum Type Conversion | Missing assert to val- | Hakiro In this contract, there is an enum type named | 67 60(89.55%)

(ETC) idate if the conversion Step. In function setStep(uint step), there
to the enum type is done is a missing assertion to check if sellingStep assert
correctly = Step(step); is done correctly

22000 - e

Function Argument of address type) I

-+~ External Calls .
External Contracts

21000 -

-#- Array Allocation
-~ Division by Zero
20000~ -+ Pop from Arrays .
- Enum Type Conversion -
1 19000 -
4
0 .
H
2 .
= o
Z 18000- ’
s
#*
17000 - o
S
/
//
1000 -
oA
PP P
& & & & & & & & & & & B

Figure 5: RQ5. Error-handling (EH) misuses per quarter.

time, AA is on average ~ 76% higher than “division by zero” (DZ),
and ~ 85% higher than “enum type conversion” (ETC). Note that
assert-related misuses (DZ and “pop from array” — PA) frequencies
are zeroed after June 2021. This happens due to the incorporation
of the SMTCHECKER that runs by default in solc v0.8.7, and was
released in June 2021. Recall that the SMTCHECKER automatically
performs checks for DZ and PA, nullifying the use of assert for
the corresponding coding situations.

Table 6 presents descriptive statistics regarding the growth rates

of EH misuses per quarter. FAA and ECALL have the lowest median.

This may seem slightly contradictory to the findings related to
the corresponding misuses frequencies. However, the low growth
rates involve the rise of using require over time to handle external

calls and function arguments (see also Sec. 4.3). ECoN has the next
lowest median, meaning that developers relatively use try-catch
to examine the creation of an external contract. DZ and PA have
the highest median. This is because developers do not use assert
to assess either if pop is valid or if a division by zero may take place.
Note that in the case of DZ and PA, we examine the period of time
prior to the inclusion of the SMTCHECKER. The next categories that
have the highest median include ETC and AA. This indicates that
developers should consider using assert more often to check array
lengths and enum type conversions. Recall that SMTCHECKER have
yet to automatically check the corresponding coding situations.
Additionally, we performed the Wilcoxon-test [33] and found that
the differences are statistically significant.

Answer to RQ5: Over time, the highest number of misuses
involves the absence of EH for (1) validating calls to external
contracts, (2) checking if the input of an address type is
reliable. However, the corresponding growth rates are low,
which indicates the increasing use of the EH features that
can handle such cases. The impact of the introduction of
the SMTCHECKER into the Solidity compiler is prominent
here, with corresponding misuses’ frequencies dropping
ever since its introduction.

4.6 Key Take-aways and Suggestions

Amplifying EH usage in Solidity. Our results indicate that over-
all, the usage of most EH features overtime is limited (except for
require showing an upward trend). Thus, we call for actions that
can assist developers to engage in using those features, where re-
quired, avoiding potential EH misuses. Such actions may include

ESEM 2024, October 2024, Barcelona, Spain

Table 6: RQ5. Error-handling (EH) misuse growth rates.

EH Misuse Category ‘ Min ‘ Max ‘ Mean ‘ Median ‘ St. Dev.

External Call (ECALL) 0.043 0.332 0.190 0.218 0.133
Function Argument of address type (FAA) | 0.004 | 0.205 | 0.103 0.110 0.110
External Contract (ECoN) 0.331 3.641 1.777 1.775 1.164
Array Allocation (AA) 0.306 | 4.897 | 2.081 2.045 1.590
Pop from Array (PA) 0.911 | 4.970 | 3.588 4.161 1.646
Division by Zero (DZ) 0.801 | 10.201 | 6.364 7.299 3.832
enum Type Conversion (ETC) 0.470 | 2.647 | 1.920 2382 0.881

the improvement of the Solidity documentation, by explaining, for
instance, the usage of EH features by providing concrete examples,
the development of ad-hoc tools that can automatically suggest EH
usages where required, and the addition of extra checks into the
SMTCHECKER.

Stabilising Solidity’s volatile nature. Our work highlights
trends in the evolution of error handling in Solidity. Solidity de-
signers change quite often EH features ma king Solidity volatile.
Then, maybe it is difficult for developers to follow those changes,
and ignore EH features. Thus, similar future studies to ours, as
well as human surveys, could help Solidity designers to understand
potential needs and, consequently, stabilise their framework.

Enhancing Solidity documentation. The EH misuses we dis-
cussed in Section 4.4 reveal that developers ignore or may find
it difficult to understand the specification usage of EH features
in the documentation. Therefore, there is a need to improve the
documentation in terms of explainability, so that developers can
understand the usage of EH features and remain engaged in EH
usage (e.g., how to safely handle elements involved in transactions
among smart contracts). Solidity designers could also add to the
documentation representative examples of real-world EH misuses
and their impact in terms of reliability and security. We include
examples in Section 4.4.

Introducing data-flow analysis. Incorporating data-flow anal-
ysis into solc could also help developers write more secure smart
contracts. By employing data-flow analysis, developers will be able
to to detect inputs coming from external calls, track their flow
within the contract, and check if they reach any sensitive “sinks”.
Based on this information, they will be able to automatically iden-
tify where the use of require is essential. Furthermore, data-flow
analysis can be performed by ad-hoc tools as done in other pro-
gramming languages such as Java [21].

5 THREATS TO VALIDITY

Construct validity. A potential threat to construct validity [54, 65]
is posed by the use of the heuristic rules presented in Section 3.6. We
mitigate this threat by validating the rules on a random sample of
80 smart contracts, following the approach described in Section 3.6.
In each of the 80 cases, we observed correct matches between the
AST nodes with EH features and the results from the heuristic rules.
Our rules may miss potential misuses, but currently this is not
something that one can measure in a candid way, i.e., there is no
dataset-oracle to examine false negatives.

Another threat refers to potential false positives that our analysis
may suffer from. To tackle this issue, two authors manually checked
for false positives in the findings (e.g., whether a misuse identified

"Note that SMTChecker already includes automatic checks replacing cases of assert.

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris loannidis, Federica Sarro, and Dimitris Mitropoulos

by our heuristics is not an actual misuse). Specifically, for each
misuse category, we randomly selected ten corresponding cases
from our findings (70 in total). Then, the two authors examined
each misuse to check for false positives. No false positives were
identified.

Furthermore, we could not examine potential misuses of the
revert feature since it is not straightforward for one to identify
a misuse involving revert.® Therefore, we opted for excluding
this feature from our analysis to reduce the risks of causing false
positives/negatives.

The reader should also consider that, such as any study that

involves manual analysis, our study may also suffer from human
errors. To mitigate this threat the authors cross-checked their find-
ings following the process explained in Section 3.4. Finally, our
approach strictly categorises cases where error handling is not ex-
plicitly used by developers, according to Solidity’s documentation.
However, in practice, implicit error handling could be also sufficient.
For instance, not every call to another contract has to be handled
explicitly (e.g., consider an ECall or ECon misuse). We aim to en-
hance, in the future, our approach, so that we can also identify such
cases, where implicit error handling is also adequate.
External validity. A threat to external validity of our study refers
to the fact that our findings might not extend beyond the smart
programs and Solidity versions investigated herein. However, to mit-
igate this threat we curated, to our knowledge, the largest publicly
available benchmark of Solidity smart contracts to date. Moreover,
we described in detail the methodology we used and made a replica-
tion package available to allow for future replication, reproduction
and extension of our work to other smart contracts.

6 RELATED WORK

Several studies investigate bugs and vulnerabilities of smart con-
tracts (e.g., [22, 31, 42, 51, 53, 62, 67, 68]), and their automated
detection and repair (e.g. [27, 35, 56]).

Other studies, focus on particular features of the Solidity pro-
gramming language. For example, Chaliasos et al. [28] and Liao
et al. [46] conduct an empirical study of 50M and 7.6M smart con-
tracts, respectively, to explore the use of inline assembly. While,
Liu et al. [47] conduct a large-scale study, on 3,866 smart contracts,
to identify the use of transaction-reverting statements. Our study
is broader though, focusing on different EH aspects, examining EH
features’ frequency and evolution.

Regarding error handling in Solidity, there are only a few studies
available. Verheijke and Rocha [61] use a dataset of 26,799 smart
contracts to examine the usage of Solidity functions such as call,
send, and transfer. To evaluate whether those functions are used
in a secure manner, the study also investigates the use of three
Solidity guards, i.e., assert, require, and revert. As in our study,
Verheijke and Rocha [61] also find that the developers of smart con-
tracts mostly use require. Additionally, Wang et al. [63] analyse
172,645 real-world smart contracts to examine features of the Solid-
ity programming language related to control flow, object-oriented
programming, data structures and error handling. Contrary to the

8The revert EH feature is mainly used to revert a transaction if a condition is not met.
To do so, developers have to use revert in if-else conditionals, which are tailored
to the smart contracts’ logic.

Broken Agreement: The Evolution of Solidity Error Handling

aforementioned studies, we conduct a thorough examination of the
evolution of each Solidity EH feature and its usage on a dataset of
283K unique open-source smart contracts.

There are several studies that examine the EH mechanisms of
other programming languages, including Java [36, 37, 43, 45, 49,
50, 57, 59, 64], C++ [23, 24, 66], Python [52], Ada [58], Swift [26],
and Rust [38]. Most studies show that developers neglect the usage
of error handling. In our study, we also find that developers use
Solidity EH features rarely.

7 CONCLUSIONS

Our analysis of 283K smart contracts reveals that the usage of most
EH features has been limited, although there is an upward trend
in the usage of the require feature. The popularity of require
indicates that programming language designers could consider
the development of EH features that are more tailored to the pur-
poses of each language. Furthermore, our analysis of the different
versions of the Solidity documentation, as well as the analysis of
the EH misuses found in practice, indicates that Solidity changes
frequently, having a volatile nature. Additionally, smart contracts
are particularly exposed to EH misuses, caused, for instance, from
unchecked external calls. Based on our findings we identify four
main areas of improvements: amplifying EH usage in Solidity, stabil-
ising Solidity’s volatile nature, enhancing Solidity documentation,
and introducing data-flow analysis.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. nnnnnnn and Grant No. mmmmmmm,
and by the ERC Advanced Grant no.741278. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] n.d.. https://rekt.news/nomad-rekt/ Last access on 13/10/2023.

[2] nd.. https://github.com/Solidity-ErrorHandling- Anonymous/solbench

[3] nd.. https://docs.oracle.com/java/tutorial/essential/exceptions/throwing.html

Last access on 12/10/2023.

] n.d.. https://swcregistry.io/docs/SWC-104 Last access on 13/10/2023.

] n.d.. https://sweregistry.io/docs/SWC-101 Last access on 15/10/2023.

] nd.. https://swcregistry.io/docs/SWC-113 Last access on 15/10/2023.

] n.d.. . https://docs.soliditylang.org/en/v0.8.19/control-structures.html#error-

handling-assert-require-revert-and-exceptions Last access on 07/10/2023.
[8] n.d.. https://github.com/Solidity-ErrorHandling- Anonymous/solbench/blob/
main/src/ast_detector.py
[9] n.d.. https://swcregistry.io/docs/SWC-118 Last access on 15/10/2023.

[10] n.d.. https://soliditylang.org/blog/2020/04/06/memory-creation-overflow-bug/
Last access on 14/10/2023.

[11] n.d.. https://cwe.mitre.org/data/definitions/369.html Last access on 14/10/2023.

[12] n.d.. Control Structures Solidity Documentation. https://docs.soliditylang.org/en/
v0.8.19/control-structures.html [Last access 15/10/2023].

[13] n.d.. Daily Etherium transactions. https://etherscan.io/chart/tx [Last access
31/10/2023].

[14] n.d.. The Ethereum Platform. https://ethereum.org/en/ [Last access 15/10/2023].

[15] n.d.. Etherscan. https://etherscan.io/ [Last access 31/10/2023].

[16] n.d.. SMTChecker Documentation. https://docs.soliditylang.org/en/v0.8.19/
smtchecker.html [Last access 15/10/2023].

[17] n.d.. Solidity. https://docs.soliditylang.org/en/v0.8.0/ [Last access 15/10/2023].

[18] n.d.. Version 0.4.13 Announcment. https://blog.soliditylang.org/2017/07/06/
solidity-0.4.13-release-announcement/ [Last access 16/10/2023].

[19] Manar Abdelhamid and Ghada Hassan. 2019. Blockchain and Smart Contracts.
In Proceedings of the 8th International Conference on Software and Information

[20]

[21

~
&,

[23

[24

[25]

I
S

[27]

(28]

[29

@
=

[31

[32

[33

[35

[36

[39

ESEM 2024, October 2024, Barcelona, Spain

Engineering (Cairo, Egypt) (ICSIE ’19). Association for Computing Machinery,
New York, NY, USA, 91-95.

S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. 2019. A System-
atic Evaluation of Static API-Misuse Detectors. IEEE Transactions on Software
Engineering 45, 12 (2019), 1170-1188.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th Conference on Programming
Language Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14).
259-269. https://doi.org/10.1145/2594291.2594299

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts SoK. In Proceedings of the 6th International Confer-
ence on Principles of Security and Trust - Volume 10204. Springer-Verlag, Berlin,
Heidelberg, 164-186.

Rodrigo Bonifacio, Fausto Carvalho, Guilherme N. Ramos, Uira Kulesza, and
Roberta Coelho. 2015. The use of C++ exception handling constructs: A compre-
hensive study. In 2015 IEEE 15th International Working Conference on Source Code
Analysis and Manipulation (SCAM). 21-30.

Kirsten Bradley and Michael Godfrey. 2019. A Study on the Effects of Exception
Usage in Open-Source C++ Systems. In 2019 19th International Working Conference
on Source Code Analysis and Manipulation (SCAM). 1-11.

Ryan Browne. 2021. Ether, the world’s second-biggest cryptocurrency, is closing in
on an all-time high. https://www.cnbc.com/2021/01/19/bitcoin-ethereum-eth-
cryptocurrency-nears-all-time-high.html [Online; accessed 20-July-2023].
Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik. 2018.
How Swift Developers Handle Errors. In Proceedings of the 15th International
Conference on Mining Software Repositories (Gothenburg, Sweden) (MSR ’18).
Association for Computing Machinery, New York, NY, USA, 292-302. https:
//doi.org/10.1145/3196398.3196428

S. Chaliasos, M. Charalambous, L. Zhou, R. Galanopoulou, A. Gervais, D.
Mitropoulos, and B. Livshits. 2024. Smart Contract and DeFi Security Tools:
Do They Meet the Needs of Practitioners?. In 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos,
CA, USA, 705-717.

Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits. 2022. A Study of Inline
Assembly in Solidity Smart Contracts. Proc. ACM Program. Lang. 6, OOPSLA2,
Article 165 (oct 2022), 27 pages.

Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A
Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses.
ACM Comput. Surv. 53, 3, Article 67 (jun 2020), 43 pages.

Haoxian Chen, Gerald Whitters, Mohammad Javad Amiri, Yuepeng Wang, and
Boon Thau Loo. 2022. Declarative Smart Contracts. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 281-293.

Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2022.
Defining Smart Contract Defects on Ethereum. IEEE Transactions on Software
Engineering 48, 1 (2022), 327-345.

Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin Zheng.
2021. Understanding Code Reuse in Smart Contracts. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 470-479.
William Jay Conover. 1999. Practical nonparametric statistics (3. ed ed.). Wiley,
New York, NY [u.a.].

Thomas Durieux, Jodo F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 530-541.

Thomas Durieux, Jodo F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
ACM.

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In 2013 35th International Conference on Software Engineering (ICSE). 422-431.
https://doi.org/10.1109/ICSE.2013.6606588

Felipe Ebert, Fernando Castor, and Alexander Serebrenik. 2015. An exploratory
study on exception handling bugs in Java programs. Journal of Systems and
Software 106 (2015), 82-101.

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust Used
Safely by Software Developers?. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering (Seoul, South Korea) (ICSE "20). Association
for Computing Machinery, New York, NY, USA, 246-257. https://doi.org/10.
1145/3377811.3380413

Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-Usage Up-
date for Android Apps. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). ACM, 204-215.

https://rekt.news/nomad-rekt/
https://github.com/Solidity-ErrorHandling-Anonymous/solbench
https://docs.oracle.com/java/tutorial/essential/exceptions/throwing.html
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-113
https://docs.soliditylang.org/en/v0.8.19/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://docs.soliditylang.org/en/v0.8.19/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://github.com/Solidity-ErrorHandling-Anonymous/solbench/blob/main/src/ast_detector.py
https://github.com/Solidity-ErrorHandling-Anonymous/solbench/blob/main/src/ast_detector.py
https://swcregistry.io/docs/SWC-118
https://soliditylang.org/blog/2020/04/06/memory-creation-overflow-bug/
https://cwe.mitre.org/data/definitions/369.html
https://docs.soliditylang.org/en/v0.8.19/control-structures.html
https://docs.soliditylang.org/en/v0.8.19/control-structures.html
https://etherscan.io/chart/tx
https://ethereum.org/en/
https://etherscan.io/
https://docs.soliditylang.org/en/v0.8.19/smtchecker.html
https://docs.soliditylang.org/en/v0.8.19/smtchecker.html
https://docs.soliditylang.org/en/v0.8.0/
https://blog.soliditylang.org/2017/07/06/solidity-0.4.13-release-announcement/
https://blog.soliditylang.org/2017/07/06/solidity-0.4.13-release-announcement/
https://doi.org/10.1145/2594291.2594299
https://www.cnbc.com/2021/01/19/bitcoin-ethereum-eth-cryptocurrency-nears-all-time-high.html
https://www.cnbc.com/2021/01/19/bitcoin-ethereum-eth-cryptocurrency-nears-all-time-high.html
https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413

ESEM 2024, October 2024, Barcelona, Spain

[40]

[41]

[42]

[43

[44

[45

[46]

[47]

[48]

[49]

[50

[51

[52]

[53

[54]

[55]

[56]

ar
=

[58

[59]

[60]

Arthur Gervais, Ghassan O. Karame, Karl Wiist, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof
of Work Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association
for Computing Machinery, New York, NY, USA, 3-16.

Mingyuan Huang, Jiachi Chen, Zigui Jiang, and Zibin Zheng. 2024. Revealing
Hidden Threats: An Empirical Study of Library Misuse in Smart Contracts. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(ICSE °24). Association for Computing Machinery, New York, NY, USA, Article
26, 12 pages. https://doi.org/10.1145/3597503.3623335

Sungjae Hwang and Sukyoung Ryu. 2020. Gap between Theory and Practice: An
Empirical Study of Security Patches in Solidity. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 542-553.
Mary Beth Kery, Claire Le Goues, and Brad A. Myers. 2016. Examining Pro-
grammer Practices for Locally Handling Exceptions. In Proceedings of the 13th
International Workshop on Mining Software Repositories (Austin, Texas) (MSR ’16).
ACM, New York, NY, USA, 484-487.

Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller, and
Michael Bailey. 2018. Measuring Ethereum Network Peers. In Proceedings of the
Internet Measurement Conference 2018 (Boston, MA, USA) (IMC ’18). Association
for Computing Machinery, New York, NY, USA, 91-104.

Joseph R. Kiniry. 2006. Exceptions in Java and Eiffel: Two Extremes in Exception
Design and Application. In Advanced Topics in Exception Handling Techniques,
Christophe Dony, Jorgen Lindskov Knudsen, Alexander Romanovsky, and Anand
Tripathi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 288-300.

Zhou Liao, Shuwei Song, Hang Zhu, Xiapu Luo, Zheyuan He, Renkai Jiang,
Ting Chen, Jiachi Chen, Tao Zhang, and Xiaosong Zhang. 2023. Large-Scale
Empirical Study of Inline Assembly on 7.6 Million Ethereum Smart Contracts.
IEEE Transactions on Software Engineering 49, 2 (2023), 777-801.

Lu Liu, Lili Wei, Wugqi Zhang, Ming Wen, Yepang Liu, and Shing-Chi Cheung.
2021. Characterizing Transaction-Reverting Statements in Ethereum Smart
Contracts. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 630-641.

Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu K. Lahiri, and Isil Dillig. 2021.
Demystifying Loops in Smart Contracts. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (Virtual Event, Aus-
tralia) (ASE ’20). Association for Computing Machinery, New York, NY, USA,
262-274.

Cristina Marinescu. 2013. Should we beware the exceptions? an empirical study
on the Eclipse project. In 15th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC). IEEE, 250-257.

Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. 2016. Analysis of Excep-
tion Handling Patterns in Java Projects: An Empirical Study. In Proceedings of the
13th International Workshop on Mining Software Repositories (Austin, Texas) (MSR
’16). 500-503.

Gustavo A. Oliva, Ahmed E. Hassan, and Zhen Ming (Jack) Jiang. 2020. An
Exploratory Study of Smart Contracts in the Ethereum Blockchain Platform.
Empirical Softw. Engg. 25, 3 (may 2020), 1864-1904.

Yun Peng, Yu Zhang, and Mingzhe Hu. 2021. An Empirical Study for Common
Language Features Used in Python Projects. In 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 24-35.

Daniel Perez and Benjamin Livshits. 2021. Smart Contract Vulnerabilities: Vul-
nerable Does Not Imply Exploited. In USENIX Security Symposium.

Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering
Research and Software Metrics. In Proceedings of the 22nd International Conference
on Evaluation and Assessment in Software Engineering 2018 (Christchurch, New
Zealand) (EASE ’18). Association for Computing Machinery, New York, NY, USA,
13-23.

Alex Reinking and Ruzica Piskac. 2015. A Type-Directed Approach to Program
Repair. In Computer Aided Verification, Daniel Kroening and Corina S. Pasareanu
(Eds.). Springer International Publishing, Cham, 511-517.

Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Chengnian Sun,
Huizhong Li, and Yan Cai. 2021. Empirical Evaluation of Smart Contract Testing:
What is the Best Choice?. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021).
Association for Computing Machinery, New York, NY, USA, 566-579.

Martin P. Robillard and Gail C. Murphy. 2000. Designing Robust Java Programs
with Exceptions. In Proceedings of the 8th ACM SIGSOFT International Symposium
on Foundations of Software Engineering: Twenty-first Century Applications (San
Diego, California, USA) (SIGSOFT "00/FSE-8). ACM, New York, NY, USA, 2-10.
Alexander Romanovsky and Bo Sandén. 2001. Except for Exception Handling
Ada Lett. XXI, 3 (sep 2001), 19-25. https:/doi.org/10.1145/568671.568678

H.B. Shah, C. Gorg, and M.J. Harrold. 2010. Understanding Exception Handling:
Viewpoints of Novices and Experts. IEEE Transactions on Software Engineering
36, 2 (March 2010), 150-161.

Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini.
2019. Investigating Next Steps in Static API-Misuse Detection. In 2019 IEEE/ACM

[61

[62

[64

[65

[66

(67

Charalambos Mitropoulos, Maria Kechagia, Chrysostomos Maschas, Sotiris loannidis, Federica Sarro, and Dimitris Mitropoulos

16th International Conference on Mining Software Repositories (MSR). 265-275.
https://doi.org/10.1109/MSR.2019.00053

Darin Verheijke and Henrique Rocha. 2023. An Exploratory Study on Solidity
Guards and Ether Exchange Constructs. In Proceedings of the 5th International
Workshop on Emerging Trends in Software Engineering for Blockchain (Pittsburgh,
Pennsylvania) (WETSEB °22). Association for Computing Machinery, New York,
NY, USA, 1-8. https://doi.org/10.1145/3528226.3528372

Yilin Wang, Xiangping Chen, Yuan Huang, Hao-Nan Zhu, Jing Bian, and Zibin
Zheng. 2023. An empirical study on real bug fixes from solidity smart contract
projects. Journal of Systems and Software 204 (2023), 111787.

Ziyan Wang, Xiangping Chen, Xiaocong Zhou, Yuan Huang, Zibin Zheng, and
Jiajing Wu. 2021. An Empirical Study of Solidity Language Features. In 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C). 698-707. https://doi.org/10.1109/QRS-C55045.2021.00105
Westley Weimer and George C. Necula. 2008. Exceptional Situations and Program
Reliability. ACM Transactions on Programming Language Systems 30, 2, Article 8
(2008), 51 pages.

Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

Hao Zhang, Ji Luo, Mengze Hu, Jun Yan, Jian Zhang, and Zongyan Qiu. 2023.
Detecting Exception Handling Bugs in C++ Programs. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). 1084-1095.

Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. 2023. Demystifying Ex-
ploitable Bugs in Smart Contracts. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 615-627.

Chenguang Zhu, Ye Liu, Xiuheng Wu, and Yi Li. 2023. Identifying Solidity Smart
Contract API Documentation Errors. Association for Computing Machinery, New
York, NY, USA.

https://doi.org/10.1145/3597503.3623335
https://doi.org/10.1145/568671.568678
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1145/3528226.3528372
https://doi.org/10.1109/QRS-C55045.2021.00105

	Abstract
	1 Introduction
	2 Background
	3 Empirical Study Design
	3.1 Research Questions
	3.2 Methodology Overview
	3.3 Dataset
	3.4 Documentation Analysis Protocol
	3.5 Error-Handling Usage Categories
	3.6 Heuristic Rules

	4 Empirical Study Results
	4.1 RQ1: Evolution of EH Features Provided by Solidity
	4.2 RQ2: Frequencies of EH Usages
	4.3 RQ3: Evolution of EH Usages In Practice
	4.4 RQ4: EH Misuses: Categories and Frequencies
	4.5 RQ5: Evolution of EH Misuses In Practice
	4.6 Key Take-aways and Suggestions

	5 Threats to Validity
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

