Time Present and Time Past: Analyzing the
Evolution of JavaScript Code in the Wild

Dimitris Mitropoulos,*t Panos Louridas,*! Vitalis Salis’ and Diomidis Spinellis*
*Department of Management Science and Technology, Athens University of Economics and Business
tGreek Research and Technology Network
{dimitro, louridas, dds}@aueb.gr, vitsalis@noc.grnet.gr

Abstract—JavaScript is one of the web’s key building blocks.
It is used by the majority of web sites and it is supported
by all modern browsers. We present the first large-scale study
of client-side JavaScript code over time. Specifically, we have
collected and analyzed a dataset containing daily snapshots of
JavaScript code coming from Alexa’s Top 10000 web sites (~7.5
GB per day) for nine consecutive months, to study different
temporal aspects of web client code. We found that scripts change
often; typically every few days, indicating a rapid pace in web
applications development. We also found that the lifetime of
web sites themselves, measured as the time between JavaScript
changes, is also short, in the same time scale. We then performed
a qualitative analysis to investigate the nature of the changes that
take place. We found that apart from standard changes such
as the introduction of new functions, many changes are related
to online configuration management. In addition, we examined
JavaScript code reuse over time and especially the widespread
reliance on third-party libraries. Furthermore, we observed how
quality issues evolve by employing established static analysis tools
to identify potential software bugs, whose evolution we tracked
over time. Our results show that quality issues seem to persist
over time, while vulnerable libraries tend to decrease.

Keywords-JavaScript, Software Evolution, Bug Persistence,
Code Reuse

I. INTRODUCTION

The web is a vast repository of resources. Web sites are
based on a variety of elements including HTML markup, style
specifications, multimedia content, back-end databases, server-
side processing frameworks, and client-side code.

JavaScript is the most commonly encountered client-side
computer language for two key reasons. First, it provides a
rich interactive experience to web users by supporting browser-
provided methods to manipulate the web page’s Document
Object Model (DOM). Secondly, HTML provides the ability to
easily include scripts from arbitrary internet locations. This
helps developers reuse existing JavaScript code.

The popularity of JavaScript has led to numerous studies
examining several aspects of the language and its use. For in-
stance, such studies include extensive analyses of the dynamic
behavior of JavaScript programs [1]], [2]], [3], examination

To appear in MSR ’'19: Proceedings of the 16th Conference on Mining
Software Repositories, 2019.

Copyright ©2019 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

of programming practices [4], usage patterns of JavaScript
APIs [5f], data-flow analysis frameworks [6]], [7]], and construc-
tion of JavaScript-specific benchmarks [8].

Due to its nature, JavaScript is also related to various
security issues [9] such as Cross-site Scripting (XSS) vul-
nerabilities [10], [11]. Studies on script inclusion have also
indicated that there are thousands of web sites that import at
least one vulnerable library [12]. The caveats of the inclusion
of scripts hosted on Content Distribution Networks (CDNs) by
multiple web sites has also been extensively discussed [13]].

There is a certain aspect that JavaScript-related studies
do not take into account: fime. We present the first large-
scale study on the use of client-side JavaScript code over an
extended period. We specifically focus on the frequency of
change of JavaScript files that are used by a web site, i.e.,
their lifespans. We also examine the popularity of the various
JavaScript libraries provided by CDNs, over a specific period of
time. Our research also focuses on the evolution of bugs found
in JavaScript code and the observation of the persistence of
vulnerable libraries through time.

Motivating Examples. Our study aims to answer questions
that have a common denominator: temporal aspects of the use
of JavaScript. The distinct nature of JavaScript and its strong
relationship with the web provide an opportunity to shed light
to topics related to code update intervals, code reuse, and bug
evolution. We identified the following research questions:

* RQ1: What is the development pace of web applications?
With agile software development being all the rage [[14], [15],
[[16] and the extensive use of continuous integration tools [[17]]
and online configuration management [18], [19], [20], we
would like to see how these trends translate in development
in popular sites. Continuous changes in the scripts included in
the web sites would indicate short deployment cycles.

* RQ2: How do library dependencies evolve across time?
On many occasions, developers reuse pieces of code or
libraries to reduce engineering effort. However, code reuse
could lead to unexpected consequences such as the “un-
publishing” of an NPM module that led to the breaking of
thousands of projects using it [21]. Worse, existing vulner-
abilities in CDNs may allow attackers to execute malicious
JavaScript on thousands of websites [22]. Also, it would be
interesting to see if there are multiple web sites that import
libraries with known vulnerabilities for long periods of time.
* RQ3: How does the quality of client-side code change

over time? There are several studies that examine the evo-
lIution of software bugs and quality issues [23], [24], [25].
Specifically, researchers have examined whether bugs increase
or decrease over time, the persistence of quality issues, and the
relations between bug categories. Security bugs are usually of
particular interest [26], [27] because such bugs may introduce
a potentially exploitable weakness into a computer system.
We wanted to perform similar studies on a large repository
containing terabytes of JavaScript code. In this way, we could
examine the treatment of quality issues when a new version
of a web site is released.

Contributions. To perform our study we built a toolkit that
(1) collects scripts from a given set of sites on a daily basis
and stores them to a Git repository, (2) generates associated
metadata (e.g., the results of diverse static analysis tools),
and (3) calculates corresponding metrics. We have collected
and analyzed more than 2 TB of script code coming from
Alexa’s Top 10000 web sites [28]], for a nine-month period.
Our contributions can be summarized as follows.

1) Our study is the first to examine on a large scale
the script change frequency of popular web sites. Our
results show an overall high frequency of changes. When
we consider third party code though (which in many
occasions is automatically imported), change frequency
becomes lower. This suggests that a site is released more
often than its own developers update their code.

2) Going one step further, we perform a qualitative analysis
to examine the nature of the changes. Our findings
indicate that changes can relate to either code devel-
opment or online configuration management [18]], [20].
For example, apart from development changes involving
the addition of a specific functionality, we also observe
entities (e.g., arrays) that are automatically generated to
support the handling of different browsers.

3) We identify popular libraries and their families. Our
findings indicate that third-party libraries are shared
by many sites for long time segments. We point out
the caveats behind extensive sharing, complementing
previous related work [13]], [12].

4) We examine the evolution of the quality issues contained
in the scripts and compare our results to existing work
on the field [26], [29], [27]. Our findings indicate that
the potential bugs found in the scripts tend to persist. In
a similar way, we analyze the persistence of vulnerable
libraries over time. Specifically, we observe that vulner-
able libraries tend to decrease as time progresses.

II. METHODS
We discuss the methods we followed to collect scripts on a
daily basis and generate metadata including different types of
hashes and bug reports coming from two static analyzers.

A. Data Collection and Repository

We collected both inline and external scripts from Alexa’s
Top 10000 web sites as of November 2016. In our script
collection, we automatically downloaded the contents of each
site’s main page via wget on a daily basis. If we identified a

I’ Inline Scripts | I’ External Scripts‘I
_____________ 1 H [} 1 1
 Websites (Alexas Top | |1 [script#1 | |1 [Script#t ||
: 10000) |1 [Script#2 | |t [Cscript#2 | |
Vo [Webste#t |} S) S
! [t A R LAy

: |\ | Script #n | /I |\ | Script #n | ,l

[website #2] !

' 1"Static Tools
Output |

(]
[
1 !
:I JSHint | 1
1
1 [Retiejs] 1

\

Fig. 1: The hierarchy of the resulting dataset.

J

file as an external script (. Js), we kept it. If we encountered
an HTML file, we examined its encoding, parsed it, extracted
all its inline scripts, and saved them as separate files.

The format of our data repository can be seen in Figure [T}
We use a Git repository, where every commit corresponds to
a specific day. For every day between November 1st, 2016 to
July 31st, 2017 (271 days), there is a constant set of folders
corresponding to the sites that we have included in our study.
Each site folder contains subfolders that include either the
external or the internal scripts. Specifically, there is a standard
sub-folder that shares the same name with the parent folder
(the site’s name) containing the inline scripts of the homepage
and the site’s own external scripts. The external scripts that are
fetched from external hosts are included in sub-folders named
after the hosts.

As we mentioned earlier inline scripts are saved as
separate files. Their naming convention is as follows:
name.html-jsf—-N, where name is the name of the HTML
file from which the script was extracted, and N its serial
number. For example, index.html-jsf-0 is the script that
was found first in the index.html file. External scripts are
saved exactly as they are downloaded.

The average number of external scripts per day is 49002,
and the corresponding number for the inline is 139932. The
size of the repository is ~65 GB while the raw data per day
are ~7.5 GB—approximately 2 TB for all days [30].

B. Static Analysis

To study bug evolution, we employed two well-established
static analysis tools: JSHint [31] and Retire.js [32]. JSHint is a
lint-like static tool that identifies errors and quality issues in
JavaScript code. Note that we did not include all the output
of JSHint in our metrics. Instead, we kept warnings that may
indicate deeper problems such as bugs due to implicit type
conversion and leaking variables. We removed warnings about
potentially unsafe line breaking, comma first coding style,
and multi-line strings. Retire.js identifies vulnerable libraries
based on known file hashes, regular expressions over the
contents, and API method fingerprints dynamically evaluated in
an empty sandbox environment. Both tools have been used for
research purposes several times before [12], [33], [34], [35].
Also, JSHint has been widely accepted by developers and has
been used by organizations such as Mozilla and Wikipedia.

Both tools can produce JSON output, which we used for the
analysis presented in Section Note that, analyzing all the

1 leta=3 anonymized AST
''2 varb=a+"foo";
Variable Variable Variable Variable
Declaration Declaration Declaratlon Declaration
Variable Variable Varlable Variable
Declarator Declarator Declarator Declarator

1 (.4 %{18) %(24)

Fig. 2: The anonymized AST of a simple program that contains
constant values. Note also the removal of the location of each
node ({line, column}).

scripts of the dataset with JSHint was very time consuming.
Hence, we generated metadata that include the output of JSHint
for all the scripts used by Alexa’s Top 1001 sites.

C. Generating Hashes

The examination of script lifespans can be done in different
ways, depending on what we consider as a change. Comparing
script hashes between different days is one way to study if a
script changes. However, there are cases that may distort the
picture. For instance, we identified web sites where the only
thing that changes in a script is an integer number somewhere
in it (e.g., an access ID or a timestamp). Hence, there is
no real change in the script’s logic and functionality. Similar
situations that can effect a trivial change include the addition
of comments and white space.

Another take could involve the comparison of the Abstract
Syntax Tree (AST) hashes of the scripts. This does not com-
pletely overcome the problems, however. Consider a web site
that generates scripts dynamically for its users based on some
identity information, e.g., serves personalized advertisements.
The generated scripts do not differ in structure but the values
of specific class or variables names are unique for each
user (the Open Web Analytics framework [36] provides such
functionality through its APT). This would generate a different
AST hash for the same script. We observed the phenomenon
in many web sites during our initial tests.

Based on the above observations, we chose to replace
all identification information (e.g., function, class, variable
names) and all literal values (i.e., any constant value in an
expression such as "red" in var color = "red";) of
each script with a standard value, producing anonymized AST
hashes. In this manner, we can better observe substantial
changes in the code and leave out trivial changes like the
aforementioned ones.

To generate script ASTs we used acorn [37], an open-source
JavaScript parser that generates abstract syntax tree objects
as specified by the ESTree spec [38]. Our AST-processing
steps are as follows. First, we traverse the AST by using a
stack, doing a depth-first search. For each node, acorn saves
its position within the script (line and column count). As a

TABLE I: Site lifespan medians and KM estimates (in days).

Scripts Sites Median KM estimate
Inline 9190 7 8
External (all) 8218 5 5
Inline and External (all) 8128 2.5 3
External (own) 5909 21 29
External (third party) 6982 5 6
Inline and External (own) 8128 5 5

result, by adding a space, such values in all nodes would
change. Thus, we remove this information for all nodes and
examine the nature of the node. If it is a literal, we remove
its value and if it is either a variable or a function (described
as Identifiers by the ESTree spec) we replace the name
with a neutral value. Figure |2] illustrates the anonymization
process of the AST corresponding to a simple code fragment.

ITI. ANALYSIS AND RESULTS

The analysis of our dataset had different aspects and
spawned various kinds of results. First, we investigated the
rate of change of scripts (individually) and the total JavaScript
code of web sites. Then, we manually examined web sites to
characterize the nature of the changes. We also focused on
the popular libraries and the potential threats of sharing such
libraries, and we examined the evolution the quality issues and
the persistence of vulnerable libraries. Finally, we investigated
for how long such scripts were imported by the web sites.

A. Lifespans

From the gathered data we can investigate the changes of
individual JavaScript files and the changes of whole sites. We
can count the number of changes that happen in files, or sites,
in our study period, and thereby derive descriptive statistics,
such as the mean and the medium, for the time that elapses
between a file or a site is changed. We can also investigate
the elapsed time that we expect a file or a site to remain
unchanged. Using a metaphor whereby something is alive in
the timespan between two successive changes, we want to
investigate the lifespans of files and sites.

Measuring just the average or median time between changes
will not give an accurate estimate of the lifespan, because
sites and files continue to exist beyond the end of our data
gathering window; we cannot assume that it changes, i.e., in
our metaphor, that it dies, when we stopped collecting data.
That means that our data are right-censored; to get around
this problem, we used the Kaplan-Meier (KM) estimator [39]]
to measure the median lifespan of each item. Without getting
too deep into statistics, the Kaplan Meier estimator provides
an estimate, at each point in time (daily, in our experiment), of
the probability that an individual is alive, taking into account
the number of individuals that have died up to, and including,
that point. The Kaplan Meier median estimate defines the time
at which on average 50% of the population has died (changed,
in our experiment).

Our data are also left-truncated, in that an item may be born
before our gathering window: the web site may have remained
unchanged for a period before we started looking and it, and
the same goes for an individual file. We do not correct for that

’
|

time 1 1 example.com: Day N ‘I
' 1 inline scripts external scripts |
[PN —_— 1
b , ownscripts |
[1 el il el R 1
: 1 I 1 1

1

o | third party code ,
1

P R Tt g l __________ y
e

1 example.com: Day N + 1 \
' ' inline scripts external scripts !
1 [l —==x 1
vy own scripts |
[e VA o R \
: : \ third party code :
' : |
' | 1
\ -

Loading a third party library that changed

Fig. 3: The external scripts of a file can be either third party
code, or libraries written by the developers of the web site
(own external). A change on a third party library seems to
affect the lifespans of a web site. By not taking into account
the third party code, the lifespan increases.

in what follows; we will return to this point when we discuss
threats to validity.

We considered two ways to identify when a change happens
in a JavaScript file: a file changes when anything changes in it,
or a file changes when its AST changes. We used anonymized
ASTs for our analyses because these minimize the effect of
trivial changes, as explained in

The first way will result in more changes, which may
be unsubstantial, taking note of changes in whitespace or
automatically generated values. It will therefore produce
shorter lifetimes than the second way. In general, though, the
minimum possible lifetime is one day, where the maximum
possible lifetime may be unknown, if no change was detected
in an item throughout the whole data collection period.

Although the experiment collection ran for 271 days, we use
261 days for our analysis because we had a data gathering gap
on July 20, 2017, which could affect the calculations.

1) File Lifespan: If a site contains n external JavaScript
files, fi, f2,...,fn, and file f; had i, updates at times
ti1,ti2, ... tiq,, then we performed our analysis for each file
using the following set of lifespans:

L= {ti,jJrl _ti,j» Vi € 1,2,...n, j € 1,2,...,’6.]@,1}

In particular, we calculated the median lifespan and the KM
estimate of the median lifespan for each file referenced in each
of the sites that we studied using the set of the individual
lifespans of each file.

There were 8243 sites with external JavaScript files. Work-
ing with all changes, the median lifespan of a JavaScript file in
a site was found to be 5 days. The KM estimate of the lifespan
was found to be 6 days. About 9% of the sites did not witness
any change in any of their files throughout the study period.

If we take only AST changes into account, the lifespans
increase somewhat. There were 8218 sites whose ASTS we
could process. The median lifespan of a file was found to be
7 days and the KM estimate of the lifespan was found to be 8
days. There were about 10% of sites without any changes in
any files.

There is a slight twist concerning inline JavaScript. An
inline script at one day may change position with another
script the next day: for example, script #1 may appear as
script #2, and vice versa (see Subsection [[I-A). We cannot
know whether the change was intentional by a developer, or if
the scripts were injected in different places in the DOM tree by
a tool or an automated process. Therefore we cannot compare
inline JavaScript on a day to day basis. This phenomenon can
also appear with external JavaScript, when an external script is
simply renamed, and indeed, we found sites where this appears
to be the case. When this happens, a file’s lifetime is artificially
curtailed at each renaming, which means that the contents of
the script actually live longer than our method would suggest.
We decided to accept that, as file renaming is still an actual
change, and anyway the situation is not typical.

2) Web Site Lifespan: A web site changes when any of the
files it contains changes. To study the changes of a web site,
we took the files on each day. By concatenating the hashes
(either of files, or of ASTs) on each day, we get a representation
of the state of the web site for that particular day. We can
then use the resulting vector of values (one state per day) and
calculate the lifespans between different states. With these we
can calculate the median lifespan and the KM estimate of the
median, as before. We noticed above that a script, internal or
external, may move around from day to day. That means that
a concatenation of hashes may result in more state changes
than happened in reality. For that reason, we sorted the daily
hashes. More formally, for each site s with n JavaScript files
we have a tuple of sorted hashes for each day i:

Hg; = (hi,ho,... . hy)

By concatenating the contents of each H,; we obtain a vector
Vs whose entries represent the state of the web site at each
day i:
‘/s,i:hllhgi...Ihn

It is not necessary that a file exists on day 7; that means that its
hash is null. We represent such hashes with a special unique
value (nan). To find the lifespans we then work with the vector
Vs, detecting runs of identical elements. If we find:

V;:,i = Vsji+1l = .-+« = Vsit+k

then we know the web site stayed unchanged for k days.

Although we analyzed hashes for both files and anonymized
ASTs, in what follows we will present the results for the AST
hashes only; the file hashes show shortest lifespans, but the
anonymized AST hashes take care of trivial changes as we
discussed in Section Table [l summarizes the results.

If we work with inline JavaScript, the median is at 7 days
and the KM estimate of the median is at 8 days; about 9.5%
of the web sites did not change at all. If we move to external
JavaScript files, both the median lifespan and the KM estimate
is 5 days; at the same time, there are about 7.7% of web sites
that did not change at all.

We can work with all changes, both to the inline scripts
and to the external JavaScript files, by concatenating the
state according to the inline scripts and the external files and

time 1 | example.com: Day N
\ inline scripts

I . =~

external scripts

Laleialhy

Anewinline
script is added '
| — |
An existing inline
script is updated r -

Fig. 4: Developers seem to either add, remove or update inline
scripts over time. In this example an inline file is added and
another is updated. This actually happens in ndtv.com where
developers introduce a new function in a fresh inline file and
invoke the function in an existing one.

performing the same analysis. If we do that, we find that the
estimates fall: the median is 2 days and the KM estimate is
3 days, while about 3.5% of the sites did not change at all.

Going back to the external files, we can distinguish between
those files that are provided by third parties (say, jQuery imple-
mentations) and those files that are presumably developed by
the web site developers (see Figure [3)). To distinguish between
the two, we check whether the path for the file contains the
domain name of the site. We can partition external files to two
groups then, own files and third party files, and see how each
group contributes to web site changes.

We found 5909 web sites that contained own external
JavaScript files. The median lifespan using them climbed to
21 days and the KM estimate climbed to 29 days, while about
16% of the web sites did not change at all.

Concerning the third party JavaScript files, we found 6982
web sites that contained them. The median lifespan is 6 days
and the KM estimate is 5 days; about 6.8% of the sites
remained unchanged throughout.

Observing the difference between the own external files and
the third party files, we can proceed to see what is the situation
if we take into account the inline JavaScript and the own
external files, thus excluding those files that we know they are
developed elsewhere. The results should be briefer lifespans
than taking either of them, as we are performing a logical or.
Indeed, we found that the median and the KM estimate are
both at 5 days, while 6.2% did not have any related change.

3) Qualitative Analysis: We have manually examined three
categories of web sites to see what kind of changes take
place over a given period of time. Specifically, we focused on
(1) ten sites containing files that change frequently (i.e., they
either have a very small change median or include inline or
external files with a very small change median), (2) ten popular
sites including facebook.com, youtube.com, google.com, and
(3) five sites chosen at random. Then, we picked at random
20 consecutive dates for each site and searched for potential
changes by examining both inline and external scripts. We
have classified the changes that we have identified in two
categories: development and configuration.

Development changes involve the addition or removal of
functionalities, function updates, function invocations and oth-

ers. Consider for instance ndtv.com where, in the course of ten
days, two inline scripts were added. Both scripts contained new
functions. In addition, six inline scripts were also updated to
invoke the new functions. Figure [4| illustrates such a scenario.
The situation was similar in tripid.com (17 days) and native-
instruments.com (10 days). We found a similar pattern on
external files. For instance, in tripid.com we saw changes
regarding font-handling, while in campograndenews.com.br
(7 days) new pop-up windows were added.

Configuration changes are related to configuration manage-
ment, such as arrays and dictionaries generated automatically
by the server or JSON objects serving as data storage. For
instance, in several scripts of mozilla.org there are dictionaries
with different object ordering, on different days. Also, in some
cases, there are objects that are either added or removed from
the dictionary. Such entities can be related to the handling
of different browsers as indeed we observed in mozilla.org.
Similar entities also appear on facebook.com. Furthermore, in
facebook.com we observed that entire functions seemed to be
generated automatically (e.g., envFlush). In particular, we
observed that the same if / else statements, were written with
brackets on one day (if (condition){command;}) and
without on another (if (condition)command;), which
leads to a different AST. Given that it is highly unlikely
that someone adds or removes the brackets day by day we
can presume that this happens automatically. Or consider
zameen.com, which lists developers, agencies, and properties
for sale and rent. Interestingly, all data are stored in a JSON
object in an external script instead of a database backend. This
object is updated every time an entity is added or removed,
something that we observed in our analysis.

Using anonymized AST hashes (rather than using simple
AST hashes) turned to be the right choice. In particular, there
were sites, such as clubic.com, where function names changed
almost every day even if the rest of the code stayed the
same (e.g., from funct05 to funct05b). Variable names
displayed a similar behavior in citibank.com and staturn.de
(note that this is not the saturn.de site, which also belongs in
the top 10000). Such cases would produce a distorted image
regarding script lifespans, if we relied on simple hashes.

RQ1: What is the development pace of web applications?
Overall, our results show that the lifespans of the scripts of a
web site are short, which implies a rapid development pace.
Change frequency becomes lower, however, when we do not
consider third party code (which in many cases is automati-
cally imported). This indicates that a site is released more often
than its own developers implement functional changes on it. If
sites use continuous integration, the deployment pipeline [40]
is very short, but that does not mean that this is the result of
the site developers writing and committing new code. Due to
the large number of dependencies to third party code, which is
tracked in real time, a site’s total code content changes more
often than its own code base. Furthermore, our qualitative
analysis indicates that online configuration management is
vividly reflected on client-side code. Indeed, the automatic

2000

—

1750

1500 — jquery.min.js
conversion.js
adsbygoogle.js
jquery js
bootstrap.min.js
jquery-ui.min.js
1000 jquery.cookie.js
gpt.js
addthis_widget.js

1250

sites

750

common.js
main.js

500

250

NN AN
s 8 & g
Fig. 5: The top ten most popular JavaScript libraries over
time. They are actually 11, because common. js overtakes

main.Js in May 2017.

code updates that take place on Facebook scripts are in
accordance to the holistic configuration management that the
web site employs [18].

B. Library Popularity across Time

To investigate the popularity of JavaScript libraries across
time, we counted, for each library, the number of sites that
uses it every day. Then we took the top ten libraries in terms
of popularity each day. It turned out that they are in fact
11 libraries in the top ten, because common. js overtakes
main. js at the bottom. You can see the evolution in Figure 5]

Four of the libraries in Figure[5]are directly related to jQuery
and three of them to Google Adwords: adsbygoogle. Js,
conversion.js [41] (conversion tracking tags) and
gpt . Js [42] (Google publisher tags).

The version of each script does not appear in the name
of the file in Figure [5} because of the different ways that
a developer can include an external library. For instance, if
developers select to include jQuery from Google’s CDN, they
will add the version name as part of the directory tree. If
they do so through Microsoft, the version will appear in the
file’s name (e.g., jquery—-1.11.1.min. js, found in 150
different sites, not making it into the top libraries).

The popularity of jgquery-1.11.1.min. js is of par-
ticular importance. That is because this library decodes
HTML entities in a wrong way which may lead to an
XSS attack [43]. There are also other cases of popu-
lar libraries that are at the same time vulnerable to XSS
(e.g., jquery-1.7.2.min.js used by 126 sites and
jgquery-1.7.1.min. js used by 103 sites) [44]. Hence,
one vulnerable library can affect hundreds of popular web sites
and their corresponding users.

In a similar study that incorporated a one-day snapshot of
JavaScript code coming from thousands of sites, Lauinger et
al. [12] indicated that the jQuery libraries and Bootstrap are
also included in their top 10 list, which matches our findings.
However, they missed out common.js [45] and Google

1750

1500

1250

1000 .

iIssues
0

750 e

500 Q TR 3 . S .".-: 2 %, ° i
24 LA et T e
o .:,.',. ‘..s.‘v-‘.-;.bﬁ_.";.‘

250 : g C% 80,8 o0 s o e Y og
FiTave ST Saret W

>

a b c

de fg hi jklm nopaqs t
sites arranged alphabetically

Fig. 6: Mean number of quality issues per day for all sites,
arranged alphabetically.

Adwords-related libraries such as adsbygoogle. js. Con-
versely, they included SWFObject [46] and Moment [47] in
their list, which we did not.

Heavy dependencies to third party libraries at such a large
scale can be worrisome. Consider the case where attackers
manage to hijack the jQuery web site and change benign
scripts with malicious ones. As a result, all sites that include
these scripts will automatically run malicious code—an issue
that has also been raised by Nikiforakis et al. [13l].

RQ2: How do library dependencies evolve across time?
Overall, our results show that there are multiple third-party
libraries that are shared by web sites for long periods of
time. Vulnerable popular libraries may pose a threat to the
security of hundreds of web sites. Also, the dependencies to
such libraries can be alarming if we consider that attackers
could hijack the infrastructure that provides them. Unfortu-
nately, the vulnerability that was found recently in the popular
http://unpkg.com content delivery network [22]], indicated that
this scenario is not far from reality.

C. Software Quality Issues Evolution

From the generated metadata we can examine the evolution
of the potential bugs identified by JSHint and the persistence
of the vulnerable libraries detected by Retire.js.

1) Quality Issues Over Time: As we described in Sec-
tion [[I-B] we used JSHint to analyze the scripts of the 1001
most popular web sites. Our initial results indicate that 808 of
them have at least one issue in one day during the study period,
including facebook.com (mean value ~ 101 defects per day),
twitter.com (mean value ~ 106 issues per day), and cnn.com
(mean value = 204 issues per day, in fact there are constantly
204 issues in each day). Defect types include unnecessary
usage of the “use strict” directive, leaking variables and
more. Some of these defects (e.g., missing semicolons) can
be considered as code smells [48]. Nevertheless, they may
indicate deeper problems in the code.

The mean number of potential bugs per day varies widely
between sites, from O up to 1793. Most sites have less than

2000

1500

issues

1000

500

2016-11 2016-12 2017-01 2017-02 2017-03

2017-04 2017-05 2017-06 2017-07 2017-08

Fig. 7: Evolution of quality issues over time. Each line represents the number of potential bugs of a web site through the study
period. The horizontal bands indicate that the number of issues tends to remain stable.

website.org: Day N

inline scripts

jquery-2.2.4
jquery-migrate-1.4.1

sizzle

I
' site-bundle-5f2462a3ca26.js: external script
Lcontaining code from multiple third party libraries |,

Fig. 8: In some occasions third party code is gathered in
external files. Such files are automatically generated by utilities
that assign a different name to the file each time (typically
by adding the hash of the file to the name to avoid browser
caching). In this case, which is based on a real example,
we observe that the developers of the web site include two
vulnerable libraries in one external file (jquery—-2.2.4, and
Jjquery-migrate—-1.4.1).

200 issues per day: the median of the mean is at ~ 135.

Plotting the mean number of issues per day for all sites,
arranged alphabetically, we obtain Figure [f] The pattern that
can be detected is the paucity of issues in Google sites.

Beyond the mean number of quality issues per day we can
see what is going on in time. Figure [/| shows the evolution of
all defects for all sites. Each line corresponds to the number
of defects for a single site. Lines are semi-transparent. We can
discern horizontal bands, which are sites with approximately
the same number of defects over time. There are also some
sudden peaks around March, May, and July 2017.

2) Evolution and Persistence of Vulnerable Libraries:
Retire.js indicated that 5835 sites contained at least one
vulnerable library during the covered period. This is a result
that complements the findings of Lauinger et al. [12], who
have indicated that 37% of 133K sites include at least one
library with a known defect. Also, we found that 2158 of the
10K sites include on average more than one vulnerable library
per day.

30000

25000

20000

ies

15000

librari

10000
5000

0 0 50 100 150 200
vulnerability persistence in days

Fig. 9: Vulnerable library persistence histogram. The x axis
shows the days that a vulnerability remains unresolved and the
y axis the number of libraries that contain vulnerabilities that

remain open for that amount of time.

250 271

Vulnerable code from different libraries may flock together
to a single external file. Apart from simple copy paste, this can
also be done automatically by utilities (e.g., webpack [49])
that gather the code into a unique file and assign a different
name to it (typically by adding the hash of the file to the
name to avoid browser caching). Figure [§] shows the case
of a web site (based on a real example) that includes the
code of different libraries. Two of them jquery-2.2.4 and
jguery-migrate-1.4.1, contain vulnerabilities.

There are cases where specific libraries with defects are
included by a web site on all 271 days. jquery-2.2.4 is
one of these libraries. This version, in particular, is vulnerable
to XSS attacks when a cross-domain Ajax request is per-
formed without the dataType option causing text/javascript
responses to be executed [50].

How long does it take to fix a vulnerability? The sooner
the better, but reality may differ. The urgency is attenuated
if the detected vulnerability does not in fact render the web

7000 jquery

—— bootstrap
6500 angularjs
—— moment
N ———=—

mustache
dojo
swfobject
flowplayer
prototypejs
—— handlebars
jPlayer
react
—— plupload
easyXDM
tinyMCE
backbone

6000 Yul
600

issues

200
100

50

ember

Fig. 10: Vulnerable library families over time.

site vulnerable. For instance, in many occasions where sites
include jquery-2.2.4, developers use the dataType
option correctly, thus the site is not vulnerable. However, such
constructs can be seen as time-bombs waiting to go off in a
potential misuse.

Moreover, in hindsight we do know when a defect occurred,
but the developers might become aware of it only later. These
factors may explain Figure O] a histogram of the persistence
of all the detected libraries. There are 46,205 libraries that
appear as vulnerable—not all of them unique, as the same
vulnerable library may appear in multiple sites or at different
time intervals in the same site. The mean time that a vulnerable
library is used is about 41 days, with the median value at
3 days. The difference between the median and the mean is
due to the large number of outliers. There are many thousands
that are not fixed soon, either because it is not needed, or out
of ignorance; 3849 vulnerable libraries (more than 8§%) remain
unfixed throughout the whole study period.

By examining vulnerable and at the same time popular
libraries we observed that the top ten most popular vulnerable
libraries come from the jQuery family. What about other
libraries? We bundled related libraries so that we could inves-
tigate the most popular vulnerable library families. The result
is shown in Figure [I0] Vulnerable members of the jQuery
family are included in thousands of web sites. Next come
Bootstrap and Angular]JS, which appear in hundreds of sites. In
the lowest tier, going up to a hundred, Moment [47], YUT [31],
and mustache [52] are prominent. Overall, the ranking of
vulnerable library families remains constant over the period
of the study.

Based on our data, it is possible to see the actual evolution
of vulnerabilities over time for each site. Putting all sites on
a single graph would have too cluttered a result, so Figure
shows the evolution of vulnerabilities for sites starting out with
0, 1, up to 9 vulnerable libraries at the start of the study period.
As there are many thousands of sites in the first row of the
figure, we have used semi-transparent lines to detect the overall
pattern. It appears that the number of vulnerable libraries in
sites move around in fairly narrow bands. We also see that the
overall trend in the panels is to have more movement from the
starting point downwards than upwards: that is, vulnerabilities
tend to go down rather than up. This is not so in the last two

panels, but these are extreme cases anyway.

RQ3: How does the quality of client-side code change over
time?

The quality issues contained in the scripts of the various
web sites seem to persist over time. Note that studies on
the evolution of bugs in other heterogeneous environments
such as the Linux file system [29] and the code base of
the OpenBSD [26], have also pointed out that the number
of bugs does not die out over time. Nevertheless, this is not
exactly the case for vulnerable libraries which, in turn, seem
to slightly decrease as time progresses. That is an indication
that developers seem the treat issues posed by vulnerabilities
when they deploy a new version of their web site. This is not
the case though with popular, vulnerable libraries because web
sites seem to constantly include them.

IV. THREATS TO VALIDITY

We measured the lifespans of files and sites making the
assumption that they are born (i.e., that they are either created
or a new version is produced) on the day we started collecting
our data. That may not be true. Unless a file or a site changed
on the very first day, we miss out its life before we started
looking at it; that is the result of left-truncated data, at which
we hinted in Therefore it is possible that our results are
somewhat shorter than what would be if we could look back
to the past at the most recent previous change. While we could
deal with the data from the first change that we see in a file
after the start of data gathering onwards, this would result in
culling from our data all files that had only a single change
in this period, so we decided not to do that. Moreover, the
large number of changes from the point we do look at files
and sites means that we have a large number of data to work
with, so that our results should not be off the mark. Note that
we are not interested at when a file or site really comes into
existence in the first place: that would take us probably years
back. The problem is that we don’t know when it last changed
before November 1, 2016.

The same library may exist in different forms, as it may
come minimized or non-minimized; or it may even be min-
imized by different tools. As we measure popularity based
on the name of the library, this introduces a library at
multiple places in the ranking—see jquery.min.js and
jquery. js in Figure 5] A solution is to work with library
families, as we did in Figure @]; that said, it is interesting to
note the widespread use of both minimized and non-minimized
versions.

A threat to the internal validity of our experiment could be
the false positives and false negatives of the static tools that we
used. For instance, potential false negatives may occur when
Retire.js analyzes a library in its empty sandbox environment,
and the library has unmet dependencies [12]]. In addition,
JSHint stops script analysis if it finds two many errors raising
a warning and indication the proportion of the script scanned.

As we described in |lI-Al our tool collects scripts after
visiting the main page of each web site only. This is a threat
because (1) we do not include all the inline scripts of a web

4970 sites

Ll I
\ \ \

: [l (| | [l | I ’
5 | e
R NI nvm

I T AT 01 Y l(‘l lWIN

U b I
2 I ‘\] l 2

TN H TN A ! it ‘|M\|

I

A |“ WHII |||‘ Hl‘lll .

9 sites

3192 sites

111 sites

4 sites

1309 sites

I8 (1l
I Ul’lll'l\h’”\H“\l’lhl’lfl ll‘lll\lﬂlllﬂlll!ll||lllU‘lIIIIl|

UM SRS AT DA

\H\

[I
[l - NI

& P
&
) O
v >

3
& \«9
S S

v v

S
A5
&

o

> H © A L
\«9 \49 \«9 \49 \«9
N) N) N
v v v v v
29 sites
10
8
V L_H Uﬂ _J |
\ 2
W . \
> o © Q 3 o~ a N 9 & > o © A $
& W& AN A R A A SRR
O O S S S & & S S
3 sites.
10
8
6
4
2
0
> H J A $ N 3 N 2 & > » J A $
N N S O S N A N IS} IS N1 N S S S
A7 A7 3 A7 QA Gl < A7 A7 A7 A7 A7 A7 A7 A7
P A I (e

L L ® LS

Fig. 11: Persistence timelines. Each panel corresponds to sites that start out with 0, 1, up to 9 vulnerable libraries, the maximum
we found. Starting points are indicated with red bullets. The last panel groups together the 8 and 9 starting points. The overall
trend is close and downwards from the starting points. When starting from 0 we do see considerable movement to 1, only, but

there the only way is up.

site and (2) we may loose other external libraries employed
in other pages of the web site. However, best practices dictate
that external libraries that are used by a site must be included
in all its pages [13].

V. RELATED WORK

Our work falls under two different categories of related
work: measurement studies focusing on the characteristics and
the behavior of JavaScript, and the evolution of software faults.
A. Measurement Studies on JavaScript

The common denominator for almost all JavaScript-related
studies is that they focus on web snapshots without taking into
account the time factor.

We already had occasion to mention the work of Lauinger et
al. [12], who conducted a study on client-side JavaScript code
using a snapshot of 133K web sites, half of which were the top
75K Alexa web sites and the other half a random snapshot of

the web. In order to identify vulnerabilities they used static
analysis and dynamic analysis. They, too, used extensively
Retire.js. In our work we have also focused on libraries with
defects, but focusing on the evolution over time.

Nikiforakis et al. [[13], who we have also met above, did
take time into account in their study regarding JavaScript
inclusions. They underline that when developers include a third
party library into their web site, they should not fully trust the
third party provider. Their results show that such providers can
be be successfully compromised by attackers by exploiting
specific types of vulnerabilities. Their dataset consists of a
large scale crawl of the top 10000 Alexa web sites, visiting at
most 500 pages per site. The crawl was not continuous though,
with months passing in between.

Kumar et al. [9]] conducted a study on the top 1M Alexa web
sites, showing that each page loads a median of 73 resources,

23 of which are external. Their methodology involved visiting
the root pages of each site and analyzing the resources loaded
by it. They noted that a small number of third parties serve
resources for a large fraction of sites. Such third parties include
Google, Facebook, CDNs, and cloud providers. Furthermore,
they showed that 33% of the top million sites load unknown
content indirectly through at least one third-party, exposing
users to resources that site operators have no relationship with.

On the library popularity front, Libscore [S3] is a popular
web-based tool that scans the 1 million most popular web
sites to collect statistics related to JavaScript library usage.
Libscore can detect modules loaded either via Requirel]S,
jQuery plugins, window variables and external scripts. This
is accomplished partly by visiting each site and running
heuristics related to the window variables to determine if they
were the result of a third party library.

Focusing on JavaScript related vulnerabilities, Lekies et
al. [54] showed cases of insecure usage of browsers’ local
storage for code caching purposes using the Alexa Top 500K
web sites. Meanwhile, Son et al. [55] wrote about the defects
arising from unsafe uses of the postMessage () function
using the Alexa Top 10K web sites. Moving to XSS attacks,
Lekies et al. [10] detected and validated DOM-based XSS
vulnerabilities on the Alexa Top 5K web sites. The different
(and at times dangerous) usage patterns of the eval ()
function have also been extensively studied [5]]. Yue et al. [4]]
showed insecure practices related to JavaScript, including
cross-domain inclusion and the execution and rendering of
dynamically generated JavaScript and HTML. They find that
over 66.4% of the 6,805 web sites in their dataset include
JavaScript from external domains into the root documents of
their web sites, and 44.4% use eval (). Finally, the error
messages printed by JavaScript and their root causes have
been studied [56] using 50 of the top 100 Alexa web sites. The
corresponding results indicated that both non-deterministic and
deterministic errors occur depending on the time spent on the
web site or the speed of testing.

B. Studies on Bug Evolution

Ozment and Schechter [26] have examined the evolution of
the defects found in the code base of OpenBSD. Specifically,
they measured the rate at which new code has been introduced
and the rate at which bugs have been identified and reported
over a 7 year period and 15 releases. The authors indicated that
there is a small decrease in the rate at which vulnerabilities
are being reported. However, defects seemed to be persistent
for a period of at least 3 years.

Lu et al. [29] examined the evolution of filesystem code.
In particular, they analyzed the changes of Linux filesystem
patches to identify and extract bug patterns and categorize
bugs based on their impact. Their findings indicated that the
number of bugs does not die down over time. We observed a
similar situation with the bugs contained in the various scripts.

Mitropoulos et al. [27] have studied the evolution and
the persistence of potential security bugs found in different

10

versions of software libraries contained in the Maven Repos-
itory [57]. Their results show that it is not clear whether
across projects defect counts increase or decrease over time.
Regarding persistence, security bugs seem to be persistent in
the same manner as other bugs (e.g., performance bugs).

Massacci et al. [23] analyzed the evolution of bugs by
examining six releases of Firefox. To achieve this, they
created a database that contained information coming from
Bugzilla entries, the MFSA (Mozilla Firefox-related Security
Adbvisories) list [58]], and others. Their findings show that bugs
are indeed persistent over time.

The evolution of software artifacts has also been examined
to reduce the false positives of static tools. To do so, Spacco et
al. [S9] attempted to pair sets of bugs between versions to find
similar patterns. In their research they examined the evolution
of 116 builds of the JDK. Their findings showed that high
priority bugs are fixed as time progresses.

VI. CONCLUSIONS AND FUTURE WORK

Our findings show that the lifespans of the scripts of a
web site are short, which indicates a high development pace
(RQ1)—-certainly much higher than traditional methods such
as the waterfall model. This can be the result of continuous
integration tools, as well as widespread adoption of agile
development methods. At the same time, many changes are
not really changes in functionality, but configuration changes.
That may reflect the fact that, in JavaScript, configuration is
often given by JavaScript objects, which are indistinguishable
from code. In a certain sense, configuration is code.

We found that there are many popular third-party libraries
shared by multiple sites over time, and the popularity of li-
braries seems to remain constant over time (RQ2). A worrying
finding involves the usage of vulnerable libraries by hundreds
of web sites. The quality issues contained in the scripts of
the different web sites seem to persist as time progresses.
However, this is not the case for vulnerable libraries which,
in turn, seem to decrease over time (RQ3).

We mentioned the problem of false positives emitted by
static analyzers in Section[[V] A possible way to address false
positives would be to take a random sample of JSHint reported
issues and manually check their status. Then we could get
confidence intervals on the actual number of bugs.

Further studies based on our dataset may examine how web
site client code conforms to Lehman’s laws of software evo-
lution [[60]], and specifically, “continuing change”, “increasing
complexity” and “declining quality”. It is also possible to study
the evolution of issues separately for third party libraries and
site-specific code. This will provide us with details on how
third party code affects the web sites that include it. The
popularity of web sites can also be taken into account in the
measurements, for instance investigating how the persistence
of vulnerable libraries varies in sites with different numbers
of visitors.

Data Availability. Our dataset is publicly available through
the Zenodo service [30].

Acknowledgements. We would like to thank the reviewers for
their insightful comments and constructive suggestions. This
work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 825328. This work was also supported by the Euro-
pean Union’s Connecting Europe Facility (CEF) Work Program
2016 under grant agreement INEA/CEF/ICT/A2016/1332498
and by computational time granted from the Greek Research
& Technology Network (GRNET) in the National HPC facility
- ARIS - under project ID: Panos Louridas — JS Evolution.

REFERENCES

[1] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” in Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI *10. New York, NY, USA: ACM, 2010,
pp. 1-12.

[2] S. Wei, “Blended analysis for JavaScript: A practical framework to

analyze dynamic features,” in Proceedings of the 3rd Annual Conference

on Systems, Programming, and Applications: Software for Humanity, ser.

SPLASH ’12. New York, NY, USA: ACM, 2012, pp. 101-102.

S. Wei, F. Xhakaj, and B. G. Ryder, “Empirical study of the dynamic

behavior of JavaScript objects,” Softw. Pract. Exper., vol. 46, no. 7, pp.

867-889, Jul. 2016.

[4] C. Yue and H. Wang, “A measurement study of insecure JavaScript

practices on the web,” ACM Trans. Web, vol. 7, no. 2, pp. 7:1-7:39,

May 2013.

G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men

do: A large-scale study of the use of eval in JavaScript applications,”

in Proceedings of the 25th European Conference on Object-oriented

Programming, ser. ECOOP’11. Berlin, Heidelberg: Springer-Verlag,

2011, pp. 52-78.

R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information

flow for JavaScript,” in PLDI ’09: Proceedings of the 2009 ACM

SIGPLAN conference on Programming language design and implemen-

tation. New York, NY, USA: ACM, 2009, pp. 50-62.

[7]1 D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study of
privacy-violating information flows in JavaScript web applications,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, ser. CCS *10. New York, NY, USA: ACM, 2010, pp.
270-283.

[8] G. Richards, A. Gal, B. Eich, and J. Vitek, “Automated construction of
JavaScript benchmarks,” in Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA *11. New York, NY, USA: ACM, 2011,
pp. 677-694.

[9]1 D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A. Halderman,
and M. Bailey, “Security challenges in an increasingly tangled web,” in
Proceedings of the 26th International Conference on World Wide Web,
ser. WWW ’17. International World Wide Web Conferences Steering
Committee, 2017, pp. 677-684.

[10] S. Lekies, B. Stock, and M. Johns, “25 million flows later: Large-
scale detection of DOM-based XSS,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, ser. CCS
’13. New York, NY, USA: ACM, 2013, pp. 1193-1204.

[11] D. Mitropoulos, K. Stroggylos, D. Spinellis, and A. D. Keromytis, “How
to train your browser: Preventing XSS attacks using contextual script
fingerprints,” ACM Transactions on Privacy and Security, vol. 19, no. 1,
pp. 2:1-2:31, Jul. 2016.

[12] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
JavaScript libraries on the web,” in Proceedings of the 21st Network and
Distributed System Security Symposium (NDSS '17’), 2017.

[13] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include: Large-
scale evaluation of remote JavaScript inclusions,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security, ser.
CCS ’12. New York, NY, USA: ACM, 2012, pp. 736-747.

[14] 1. Jacobson, I. Spence, and E. Seidewitz, “Industrial-scale agile: From
craft to engineering,” Commun. ACM, vol. 59, no. 12, pp. 63-71, Dec.
2016.

[3

=

[5

=

[6

=

11

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

K. Kuusinen, P. Gregory, H. Sharp, and L. Barroca, “Strategies for
doing agile in a non-agile environment,” in Proceedings of the 10th
ACMY/IEEE International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM "16. New York, NY, USA: ACM, 2016,
pp. 5:1-5:6.

D. K. Rigby, J. Sutherl, and A. Noble, “Agile at scale,” https://hbr.org/
2018/05/agile-at-scale, 2018, [Online; accessed 24-July-2018].

S. Vost, “Vehicle level continuous integration in the automotive indus-
try,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
ACM, 2015, pp. 1026-1029.

C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic configuration manage-
ment at Facebook,” in Proceedings of the 25th Symposium on Operating
Systems Principles, ser. SOSP *15. New York, NY, USA: ACM, 2015,
pp. 328-343.

A. Deng, J. Lu, and J. Litz, “Trustworthy analysis of online A/B tests:
Pitfalls, challenges and solutions,” in Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, ser. WSDM
’17. New York, NY, USA: ACM, 2017, pp. 641-649.

R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A configuration
verification tool for Puppet,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’16. New York, NY, USA: ACM, 2016, pp. 416-430.

C. Williams, “How one developer just broke Node, Babel
and thousands of projects in 11 lines of JavaScript,”
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/, 2016,
[Online; accessed 25-November-2018].

M. Justicz, “Compromising thousands of websites through a CDN,”
https://justi.cz/security/2018/05/23/cdn-tar-oops.html, 2018, [Online; ac-
cessed 21-December-2018].

F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-life vulnerabilities: a
study on Firefox evolution, its vulnerabilities, and fixes,” in Proceedings
of the Third international conference on Engineering secure software
and systems, ser. ESSoS’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 195-208.

N. Edwards and L. Chen, “An historical examination of open source
releases and their vulnerabilities,” in Proceedings of the 2012 ACM
conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 183-194.

S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on Firefox,” in Proceedings of the 8th Working
Conference on Mining Software Repositories, ser. MSR 11. New York,
NY, USA: ACM, 2011, pp. 93-102.

A. Ozment and S. E. Schechter, “Milk or wine: does software security
improve with age?” in Proceedings of the 15th conference on USENIX
Security Symposium. Berkeley, CA, USA: USENIX Association, 2006.
D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and D. Spinel-
lis, “Dismal code: Studying the evolution of security bugs,” in Proceed-
ings of the LASER 2013 (LASER 2013). USENIX, 2013, pp. 37-48.
“Alexa: The top 500 sites on the Web,” https://www.alexa.com/topsites,
2018, [Online; accessed 06-March-2019].

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan
Lu, “A Study of Linux File System Evolution,” in Proceedings of the
11th Conference on File and Storage Technologies (FAST ’13), San Jose,
California, February 2013.

D. Mitropoulos, P. Louridas, V. Salis, and D. Spinellis, “All Your Script
Are Belong to Us: Collecting and Analyzing JavaScript Code from 10K
Sites for 9 Months,” https://doi.org/10.5281/zenodo.2593266, Mar. 2019.
“JSHint, a static code analysis tool for JavaScript,” http://jshint.com/,
2016, [Online; accessed 25-November-2018].

E. Oftedal, “Retirejs: What you require you must also retire,”
http://retirejs.github.io/retire.js/, 2014, [Online; accessed 25-November-
2018].

S. Karkalas and S. Gutiérrez-Santos, “Enhanced JavaScript learning
using code quality tools and a rule-based system in the FLIP exploratory
learning environment,” in Proceedings of the 2014 IEEE 14th Interna-
tional Conference on Advanced Learning Technologies, ser. ICALT ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 84-88.

A. L. Santos, M. T. Valente, and E. Figueiredo, “Using JavaScript static
checkers on GitHub systems: A first evaluation,” in Proccedings of the
3rd Workshop on Software Visualization, Evolution and Maintenance
(VEM), 2015, pp. 33-40.

N. C. Zakas, Maintainable JavaScript. O’Reilly Media, Inc., 2012.

https://hbr.org/2018/05/agile-at-scale
https://hbr.org/2018/05/agile-at-scale

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

“The open web analytics: Web analytics, open source,”
http://www.openwebanalytics.com/, 2018, [Online; accessed 21-
December-2018].

“A small, fast, JavaScript-based JavaScript parser,”
https://github.com/acornjs/acorn, 2018, [Online; accessed 21-December-
2018].

“The ESTree spec,” https://github.com/estree/estree, 2018, [Online; ac-
cessed 21-December-2018].

E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete
observations,” Journal of the American Statistical Association, vol. 53,
no. 282, pp. 457-481, 1958.

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. — Upper
Saddle River, NJ: Addison-Wesley, 2011.

“Add a conversion tracking tag to your
website,” https://support.google.com/google-
ads/answer/6331314?co=ADWORDS.ISAWNCustomer, 2018, [Online;
accessed 06-December-2018].

“Overview of Google publisher tags,”
https://support.google.com/admanager/answer/181073, 2018, [Online;
accessed 06-December-2018].

“Exploiting jQuery HTML encoding XSS’
https://stackoverflow.com/questions/31282274/exploiting-jquery-html-
encoding-xss, 2018, [Online; accessed 06-July-2018].

“Selector interpreted as HTML,” https://bugs.jquery.com/ticket/11290,
2018, [Online; accessed 06-December-2018].

“Common]S: specifying an ecosystem for JavaScript outside the
browser,” https://requirejs.org/docs/commonjs.html, 2018, [Online; ac-
cessed 06-December-2018].

“An open source JavaScript framework for detecting the
Adobe Flash Player plugin and embedding flash files.”
https://github.com/swfobject/swfobject, 2016, [Online; accessed
25-November-2018].

“Moment.js: Parse, validate, manipulate, and display dates and times
in JavaScript,” https://momentjs.com/, 2018, [Online; accessed 06-
December-2018].

T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158-173, 2018.

“Webpack: Pack your scripts,” https://webpack.js.org/, 2018, [Online;
accessed 06-December-2018].

“SNYK XSS vulnerability report on jQuery 2.24)
https://snyk.io/test/npm/jquery/2.2.4, 2018, [Online; accessed 06-
December-2018].

“YUI is a free, open source JavaScript and CSS library for building
richly interactive web applications,” https://yuilibrary.com/, 2018, [On-
line; accessed 06-December-2018].

“Minimal templating with {{mustaches}} in JavaScript,” |, 2018, [On-
line; accessed 06-December-2018].

J. Shapiro, J. Chase, and J. Chen, “Libscore: a web-based tool that
collects statistics on JavaScript library usage,” http://libscore.com/, 2014,
[Online; accessed 31-December-2017].

S. Lekies and M. Johns, “Lightweight integrity protection for web
storage-driven content caching.” Google Patents, Nov. 28 2013, uS
Patent App. 13/478,991.

S. Son and V. Shmatikov, “The postman always rings twice: Attacking
and defending postmessage in HTMLS websites.” 2013.

F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn, “JavaScript errors
in the wild: An empirical study,” in Proceedings of the 2011 IEEE
22Nd International Symposium on Software Reliability Engineering, ser.
ISSRE *11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
100-109.

“The Maven repository,” https://mvnrepository.com/, 2018, [Online; ac-
cessed 06-December-2018].

“Known vulnerabilities in Mozilla products,”
https://www.mozilla.org/en-US/security/known-vulnerabilities/, 2018,
[Online; accessed 06-December-2018].

J. Spacco, D. Hovemeyer, and W. Pugh, “Tracking defect warnings
across versions,” in Proceedings of the 2006 international workshop
on Mining software repositories, ser. MSR ’06. New York, NY, USA:
ACM, 2006, pp. 133-136.

M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proc. IEEE, vol. 68, no. 9, pp. 1060-1076, September 1980.

12

