
Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity
Compiler

Charalambos Mitropoulos,1 Thodoris Sotiropoulos,2 Sotiris Ioannidis1, and
Dimitris Mitropoulos3

1 Technical University of Crete {cmitropoulos@isc.tuc.gr, sotiris@ece.tuc.gr}
2 ETH Zurich, theodoros.sotiropoulos@inf.ethz.ch

3 University of Athens, dimitro@uoa.gr

Abstract. We introduce fuzzol, the first syntax-aware mutation fuzzer
for systematically testing the security and reliability of solc, the stan-
dard Solidity compiler. fuzzol addresses a challenge of existing fuzzers
when dealing with structured inputs: the generation of inputs that get
past the parser checks of the system under test. To do so, fuzzol intro-
duces a novel syntax-aware mutation that breaks into three strategies,
each of them making different kind of changes in the inputs. Contrary
to existing mutations, our mutation is able to change constructs, state-
ments, and entire pieces of code, in a fine-grained manner that conforms
to the syntactic rules of the Solidity grammar. Moreover, to explore new
paths in the compiler’s codebase faster, we introduce a mutation strategy
prioritization algorithm that allows fuzzol to identify and apply only
those mutation strategies that are most effective in exercising new inter-
esting paths. To evaluate fuzzol, we test 33 of the latest solc stable re-
leases, and compare fuzzol with (1) Superion, a grammar-aware fuzzer,
(2) AFL-compiler-fuzzer, a text-mutation fuzzer and (3) two grammar-
blind fuzzers with advanced test input generation schedules: AFLFast
and MOpt-AFL. fuzzol identified 19 bugs in total (7 of which were pre-
viously unknown to Solidity developers), while the other fuzzers missed
half of these bugs. Also, fuzzol outperforms all fuzzers in terms of line,
function, and branch coverage (from 3.75% to 408.8% improvement),
while it is the most effective one when it comes to test input genera-
tion. Finally, our experiments indicate that our prioritization algorithm
makes fuzzol explore new paths roughly one day (∼24h) faster.
Keywords: Fuzzing · compilers · smart contracts · structured inputs.

1 Introduction

Smart contracts are programs that are stored on a distributed ledger (i.e.,
blockchain), and are used for automating the execution of agreements and trans-
actions between crypto-currency parties. Solidity [5] is an object-oriented pro-
gramming language designed for developing smart contracts that run on several
blockchain platforms [1,2], including the Ethereum’s EVM (Ethereum Virtual
Machine) [50]. Ethereum is an open-source blockchain with Ether being its na-
tive crypto-currency, which is the second-largest by market capitalization [16].

Although there are several research endeavors to identify bugs in smart con-
tracts written in Solidity [30,15,24,27,46], there are no thorough studies focusing

Pr
e-p

rin
t

2 C. Mitropoulos et al.

on solc, the standard Solidity compiler. solc is a relatively new compiler that
counts ∼100 releases since 2015 [5]. Given the intricate nature of Solidity, solc
offers various special constructs related to smart contract functionalities includ-
ing formal software verification and inline assembly. Due to this complexity, solc
has exhibited a variety of bugs related to data structure mishandling, inadequate
sanity checks, and unsound optimizations [6].

For the last two decades, fuzzing has become a standard technique for assess-
ing software reliability and security [26,14,25]. Fuzzing has been used to identify
bugs in miscellaneous entities such as system libraries [35], web and cloud appli-
cations [10], data-oriented systems [39,40], and compilers [48,34,19].

When it comes to programs whose inputs follow specific grammars (e.g. com-
pilers), grammar-blind fuzzers (such as AFL [37]) struggle to get past syntax
checks and explore deeper code. To this end, researchers have introduced a num-
ber of grammar-based fuzzing strategies [44,43,9], and have applied them to
various domains, from PHP and Lua interpreters to JavaScript engines.

However, current grammar-based fuzzers have a number of disadvantages.
For instance, Superion [44], performs some mutations that fail to preserve a
correct syntax for the test cases it generates. In addition, many of these fuzzers
produce test inputs completely from scratch without considering any promising
and interesting language features.

Syntax-aware Mutation. We introduce syntax-aware mutation for fuzzing
the Solidity compiler. Unlike other grammar-based techniques, our mutation pro-
cesses test inputs (seeds) without breaking the syntax rules. Our mutation comes
with three different strategies operating on the Abstract Syntax Tree (AST) of
a smart contract written in Solidity. We apply our strategies to the programs
found in the compilers’ test suite. Such programs are interesting and complex, as
they exercise different language features and functionalities. Our mutations then
result in valid programs by making small changes to the existing, complex seeds.
This helps exercise new behaviors in the compiler while preserving much of the
structure and characteristics of the given seed programs. The first strategy aims
to change the control-flow of the input program by mutating statements, oper-
ators and data types. To combine diverse characteristics coming from different
test inputs, our second strategy selects two contracts and performs permuta-
tions on their AST leafs. Finally, our third strategy detects parts written in
inline assembly and changes them in a way that stresses solc’s inline optimizer.

Mutation Strategy Prioritization. Based on syntax-aware mutation, we
have realized fuzzol, a practical AFL-based fuzzer. Notably, fuzzol also incor-
porates existing grammar-blind and grammar-aware strategies. We further boost
the effectiveness of fuzzol by leveraging the insight that only a small number
of mutation strategies is effective in exploring new paths [31]. To this end, fuz-
zol comes with a novel mutation strategy prioritization algorithm that identifies
and applies only those strategies that are effective for a particular seed. Given
a seed smart contract c, our algorithm associates every strategy with an effec-
tiveness score. The next time when fuzzol processes c, our algorithm picks and
executes only those strategies whose effectiveness score is greater than a specific
threshold value, which is updated and computed dynamically.

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 3

Testing Campaign. We evaluate fuzzol by testing 33 of the latest solc
releases (>5,5M LoC). Further, we compare fuzzol against Superion [44], a
grammar-based fuzzer, AFL-compiler-fuzzer [28], a text-mutation fuzzer that has
been used to test solc among other compilers, and two grammar-blind fuzzers
with advanced seed-generation schedules: AFLFast [13] and MOpt-AFL [35].
Our results indicate that our approach is effective in finding bugs in solc. Specif-
ically, our method led to the identification of 19 unique bugs, in total, 7 of which
were related to previously unknown issues to the Solidity developers. Also, our
campaign helped the developers to identify two performance issues [4,3]. Notably,
the other three fuzzers failed to identify half of the bugs (10 / 19) found by fuz-
zol. Our findings also show that fuzzol outperforms the other four fuzzers both
in terms of bug-revealing capability, code coverage, and test input generation.
Moreover, fuzzol achieves higher levels of coverage on average: fuzzol was able
to cover ×1.05 more LoC than Superion, ×1.08 more LoC than AFL-compiler-
fuzzer, ×4.49 more LoC than AFLFast, and ×5.80 more LoC than MOpt-AFL.
Finally, our prioritization algorithm makes fuzzol exercise new compiler code-
base, significantly faster (∼24h) compared to the-state-of-the-art.

Contributions. We make the following contributions.
– We introduce a novel syntax-aware mutation with three distinct strategies

that performs fine-grained changes within an input program by taking into
account the nature and rules of a corresponding grammar.

– We design a prioritization algorithm that is able to distinguish the most ef-
fective strategies for each seed, and speed up the fuzzing process.

– We implement our approach in an AFL-based greybox fuzzer, which we call fuz-
zol. We provide in-depth evaluations for understanding the effectiveness of fuz-
zol (and its key components) when compared to four state-of-the-art fuzzers
in the context of a large-scale study including 33 releases of solc.

2 Background
We provide a brief overview of the Solidity compiler and present a number of
illustrative examples of solc bugs that our approach can help reveal. Further-
more, we discuss the limitations of previous approaches in the context of compiler
testing.

2.1 The Solidity Compiler

solc [7] is the standard Solidity smart contract compiler. To handle variables
and function arguments, Solidity employs particular mechanisms such as storage
(a persistent memory that every Ethereum account incorporates), and memory
(a byte-array that holds the data until the execution of the function terminates).

Important components of solc include an Application Binary Interface (ABI),
the built-in formal verification module, and an inline assembler. ABI is a stan-
dard way to interact with contracts in the Ethereum ecosystem. Interactions can
be both external (i.e., from outside of the blockchain) and contract-to-contract.
Note that data is always encoded according to its type, as described in the spec-
ification of ABI. Further, the encoding is not self-describing and as a result,

Pr
e-p

rin
t

4 C. Mitropoulos et al.

it requires a schema to decode. The verification module of solc utilizes Mi-
crosoft’s Z3 theorem prover [8,23]. Specifically, solc translates a contract into
an SMT (Satisfiability Modulo Theory) formula, and then it attempts to prove
the correctness of the contract and warn users about potential arithmetic over-
flows, unreachable code and more. Finally, through the inline assembler, Solidity
provides a way for contracts to interact with EVM at a low level.

2.2 Bugs in the Solidity Compiler

To motivate the design of our fuzzing approach, we discuss two indicative bugs.
Bug in SMTChecker. To enable formal verification within solc, developers

must include the SMTChecker via the pragma keyword at the beginning of their
contract (in general, the pragma keyword can be used to employ diverse compiler
features or checks). To verify a given contract and detect property violations,
solc applies Bounded Model Checking (BMC) [22] to all contract functions,
including free functions. Free functions are defined at a file-level and are not
part of a contract. As a result, they cannot directly access state variables and
internal functions of contracts. Nevertheless, they can call other contracts, emit
events and send Ether. When BMC (through the SMTChecker module, line 1)
examines the following simple, free function, solc produces an internal compiler
(version 0.7.3) error:
1 pragma experimental SMTChecker;
2 function f() { }

This happens because the SMTChecker implementation does not reason about
free functions–f in our case (a known issue among several 0.7.x versions).

Bug in array handling. The Solidity compiler may also contain bugs re-
lated to the way it handles its various structures such as arrays. Consider the
code fragment below:
1 contract C {
2 uint [7**90][500] ids;
3 }

Contract C defines an array of integers named ids. Note that the size of arrays
in Solidity have an upper bound. When solc (v0.6.0) compiles this contract an
internal error occurs. This is because the compiler fails to catch that the size
of ids is beyond the maximum size and produce a corresponding error message
to the developer. As a result, the compiler crashes notably at a later stage (i.e.,
code generation) when trying to statically allocate memory for ids.

2.3 Limitations of State-of-the-Art Fuzzers

A grammar-aware fuzzer, could affect both the parsing phase and the seman-
tic analysis process of the compiler. For this reason, grammar-aware mutation
strategies have been utilized to test scripting languages [44,9]. However, previous
grammar-aware strategies fail to form well-structured inputs efficiently.

Consider two recent mutations: the enhanced dictionary-based mutation, em-
ployed by Superion [44], and the tree-based mutation, used by both Superion

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 5

 Fuzzing

Select Seed
Solidity Compiler

Select Strategies

Compile

Update Queue

Crashes

Seed

AST Leaf Change

Inline Assembly Node Change

Operator, Statement and Data
Type Change1

2

4

5

Apply Mutation
3

[Seed]

Syntax-Aware Mutation Strategies

[Seed, Strategies]

[Mutants]

Fig. 1: Overview of our fuzzing approach for testing the Solidity compiler.

and the grammar-aware fuzzer NAUTILUS [9]. The basic concept behind the
enhanced dictionary-based mutation strategy is a dictionary containing a list
of tokens, e.g., reserved identifiers, coming from a specified grammar. Initially,
the fuzzer will tokenize the test input. After locating the token boundaries, the
mutation either places a new token from the dictionary in between two others,
or overwrites an existing one with another also coming from the dictionary. This
procedure takes place for each token in the dictionary. Unfortunately, the result-
ing test cases do not always conform to the syntax of the grammar. We provide
an illustrative example later on, in Section 3.

The tree-based mutation strategy selects two test inputs and attempts to
parse them and generate the corresponding ASTs based on the target grammar.
Note that in case of a parsing error the strategy stops. The strategy collects all
sub-trees coming from both inputs and stores them in a set (S). Given the AST
of the first test case, the strategy replaces every sub-tree with a random sub-tree
taken from S. Each replacement leads to a new test case. By design, the tree-
based mutation strategy respects the grammar of the language, as it is based on
actions that process AST sub-trees. However, as we noted above, there are many
cases where parsing will fail. This is going to happen if other mutations have
already changed the test input that the tree-based strategy currently handles in
a way that it does not conform to the grammar rules.

The AFL-compiler-fuzzer [28] offers a text-mutation strategy that detects
specific string instances in a test case and replaces it with new text taken from
an existing set. Also, it can add specific code fragments inside a program in an
arbitrary manner (e.g. include a generic if statement such as if(0==1)). Such
changes can be made in test cases written in different programming languages
and explore compilers in a unified manner. Nevertheless, they will not be able
to take into account the specifics of the language and exercise the different
components of a compiler such as Solidity.

3 Fuzzing Approach
We introduce a syntax-aware mutation that aims to reveal complex bugs in
solc. Our mutation consists of three strategies operating on the AST of a smart
contract written in Solidity (Section 3.1). To further boost the effectiveness of
fuzz testing, we present a prioritization algorithm that identifies and applies
the strategies that are most effective in exploring new interesting paths for a
specific seed program (Section 3.2). Finally, we explain some technical details
behind fuzzol, the implementation of the proposed approach (Section 3.3).

Overview. Figure 1 presents the overview of our approach. The input of our
approach is a set of test programs written in Solidity. Our initial corpus con-

Pr
e-p

rin
t

6 C. Mitropoulos et al.

function foo (uint id)
public view {
int x;
x = id++; }

function foo (uint id)
public payable {
int x;
x = id++; }

function foo (int id)
public view {
uint x;
x = id++; }

function foo (uint id)
view {
int x;
x = id++; }

function foo (uint id)
public view {
int x;
x == id++; }

generate

(view, payable)

sw
ap

(u
in
t,

in
t)

de
let

e

(p
ub

lic
)

duplicate
(=

)

(a) Substitutions performed on operators
and data types.

for (x > 0){
i f (y == 1) {...}}

while(x > 0) {
i f (y == 1) {...}}

i f (y == 1){
for (x > 0) {...}}

i f (y == 1) {...}
for (x > 0){

i f (y == 1) {
i f (y == 1) {...}}}

generate

(for, while)

sw
ap

(fo
r,

if)

de
let

e

(fo
r)

duplicate(if)

(b) Substitutions performed on statements.

Fig. 2: Example of substitutions applied to operators, statements and data types.

sists of small test cases coming from the test suites of various Solidity releases.
Notably, these test cases are designed to exercise all the different compiler fea-
tures. First, we select a test input (seed) from the fuzzing queue. Then, our ap-
proach applies both grammar-blind strategies (such as bit/byte flips [37]) and our
syntax-aware mutation to the selected seed. This syntax-aware mutation comes
with three different mutation strategies. Each strategy has a different role in
exercising Solidity’s codebase. In particular, the first strategy performs changes
to the control-flow of the input program by updating statements, operators and
data types found in each smart contract. Our second strategy selects a random
leaf from a contract’s AST and place it in another contract. In this manner, we
combine different characteristics (e.g. variable names) stemming from multiple
contracts to create seeds that are more likely to trigger bugs. The third strategy
detects the parts of a given AST written in inline assembly and replaces assem-
bly code opcode arguments with other opcodes. The main goal of this strategy
is to yield programs that contain more complicated inline assembly operations,
and consequently involve more opportunities for solc’s inline optimizer.

To make our approach faster and explore deeper code, when a seed is selected
from the queue, we employ a mutation strategy prioritization algorithm. As a
result, we are able to identify, select, and apply the strategies that are most
effective in exploring new paths for that specific seed. Our algorithm relies on
an effectiveness function that leverages details from previous iterations of the
fuzzing process (Section 3.2).

3.1 Syntax-Aware Mutation

Our syntax-aware mutation consists of different strategies. In the following,
we analyze the proposed strategies. Given a smart contract c, each strategy per-
forms a different change in c’s AST altering the contract’s behavior accordingly.

3.1.1 Operator, Statement and Data Type Change Strategy. Our first
strategy applies changes in either an operator, a statement, or a data type of a

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 7

if (expr operator expr) elsestmt stmt

if (expr numberUnit expr) elsestmt stmt

if (expr operator expr) elsestmt stmt

 ifstmt : == if (expr) stmt else stmt ?
 expr : == expr operation expr

 placing a numberUnit (e.g. ether) instead of another operator

 replacing the operator with another based on the grammar rule

initial tokenization (ifstmt)

enhanced dictionary-based
mutation (overwrite)

syntax-based mutation
(replace)

Fig. 3: The overwrite substitution of the enhanced dictionary-based strategy can
potentially break the syntax rules. This is not the case in our operator, statement,
and data type change strategy.

given contract’s AST. To do so, it replaces the selected item with another node
of the same type (e.g., an operator is substituted by another operator). Thus, the
strategy does not violate the syntax of the contract even though its behaviour
and control flow can be significantly changed.

Definition 1 (Operator, Statement and Data Type change). Let c be a
smart contract and let a ∈ {ops, stm, datatype} be a node in c’s AST that is either
an operator, a statement or a data type. Given a node a′ ∈ {ops, stm, datatype},
we say that mut(c) = c[mut(a)] = c[a′/a] is an operator, statement and data
type change of the contract c that substitutes either an operator, a statement or
a datatype node with another similar node, preserving the syntax of the language.

Specifically, a substitution c[a′/a] may involve (1) the replacement of a token
(operator, datatype) or a statement a with another token / statement a′ found
in the AST, or (2) the generation or deletion (i.e., represented by an empty node
ϵ) of valid tokens and program statements. Specifically, our strategy employs
four distinct types of substitutions namely: generate, swap, delete, and duplicate.
By performing such substitutions on Solidity tokens is of particular importance.
This is because Solidity has a number of special tokens related to smart contract
functionalities such as Ether units (e.g., finney, wei and szabo) and payment
addresses (e.g., address) that can change the course of compilation. For each
substitution we make sure that we maintain a correct grammar syntax. Note
that if a substitution violates the syntax we abort it.

Figure 2 demonstrates how each substitution works using two code fragments
as target examples. The fragments are depicted at the center of Figures 2a and 2b
respectively. In Figure 2a, we include a view function (foo) (note that a view
function can read but cannot write to the variables that process the persistent
memory), while Figure 2b illustrates a simple if statement inside a for loop.

Note that the generate substitution works in a way similar to the overwrite
method of the enhanced dictionary-based strategy implemented in Superion [44].
However, the existing overwrite strategy may violate the syntax rules of the
grammar, as it chooses a random token of the program and overwrites it with
a randomly-generated token of the language without checking whether this re-
placement breaks the syntax of the program (see also Section 2.3). This will
not happen with our generate method because the strategy will enforce a cor-
rect syntax. Figure 3, highlights The distinct difference between overwrite and
generate.

Pr
e-p

rin
t

8 C. Mitropoulos et al.

contract_A

(...)

x

+

/

var

b

Literal

100000000

var

a

(...)

contract_B

(...)

y

*

Literal

0

var

c

(...)

Fig. 4: AST leaf node
change.

3.1.2 AST Leaf Node Change Strategy. Our
AST leaf node change strategy takes the con-
tract c1 that is currently first on the queue, and
another randomly-selected contract c2 from the
queue. Then, it parses the contracts and generates
the corresponding ASTs. Given an AST leaf node
of the first contract, the strategy replaces it with
a random leaf node that stems from the second
contract. Such a replacement leads to a new test
case that involves unexpected characteristics (e.g.,
variable names), which in turn examine new com-
piler behaviours. Notably, the strategy considers
changes only in the tree leafs and not in the sub-
trees, making our strategy efficient and fast. This
is because moving sub-trees across ASTs leads to
large test cases that slow down the process.

Definition 2 (AST Leaf Node Change). Let c1 and c2 be two contracts and
let l1 be a leaf node of c1, and l2 be a leaf node of c2. Then the we say that
mut(c1) = c1[l2/l1] is an AST leaf node change of the contract c1 that replaces
a leaf l1 with another leaf l2 from another AST c2, preserving language syntax.

This strategy again results in well-formed programs because l2 of c2 will
replace l1 of c1, only if this change respects the grammar rules of the language.
An example is depicted in Figure 4. Contract A, contains the following expression:
x = a + (100000000 / b) while contract B includes: y = c * 0. Our strategy
takes the leaf node 0 from contract A and replaces it with the leaf node b from
contract B. Such a change can produce unexpected behaviours, e.g., triggering
the compiler check that verifies whether the program is free from divisions by
zero. Note that the strategy is designed to preserve the syntax, contrary to the
tree-based strategy discussed in Section 2.3.

3.1.3 Inline Assembly Node Change Strategy. In the context of Solid-
ity, developers are able to employ blockchain-specific opcodes only available
through inline assembly. However, malformed inline assembly code can affect
the optimizations that can be applied to programs by the compiler, leading to
crashes [18]. Our inline assembly node change strategy identifies inline assembly
nodes, and makes changes in the corresponding assembly’s opcodes depth.

Definition 3 (Inline Assembly Node Change). Let c be a smart contract,
o1 ∈ opcodes be an opcode node of c, and n be a child node of o1. Given another
opcode o2 ∈ opcodes, we say that mut(c) = c[o1[o2/n]/o1] is an inline assembly
node change of the contract c that replaces an argument of an opcode with another
opcode according to the grammar rules of the language. This change increases
the depth of the opcodes in the AST.

Consider the following example. In a smart contract A that involves the op-
code o = add(x, y), the strategy operates as follows: First, it selects a random

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 9

Algorithm 1: Mutation Strategy Prioritization
1 Function Prioritization(t, strategies, scores, k, bound):
2 if scores = nil then // first time we process t
3 for s ∈ strategies do
4 apply strategy s
5 scoress ← eff(s, t)
6 bound← GetKthScore(scores, k)
7 else
8 for s ∈ strategies do
9 if scoress ≥ bound then

10 apply strategy s
11 scoress ← eff(s, t)
12 if scoress ≤ bound then
13 bound← scoress
14 bound← GetKthScore(scores, k)
15 return bound

16 End Function

opcode o′ (e.g.., mul) from the set of available opcodes supported by the So-
lidity’s inline assembly language. Then, it chooses a random child node of the
initial opcode o (i.e., either x or y) and replaces it with the new opcode o′ with
the same arguments as o’s (e.g. add(mul(x, y), y)).

Overall, the inline assembly node change strategy produces complicated code
and makes it hard for the compiler to solve some formulas used for verifying
program correctness. Further, changing the inline assembly code can lead to
discrepancies among the optimized code and the regular one. The reason behind
this is that a program that manifests more complex opcodes in inline assembly
triggers more paths in the solc’s inline assembly optimizer, as the code now
involves more optimization opportunities.

3.2 Mutation Strategy Prioritization

The key idea of our algorithm is that for every seed, instead of applying all
strategies in a deterministic manner (as all AFL-based fuzzers do), we choose to
perform only the top-k strategies that are most effective in producing test cases
that explore new paths. In this way, testing does not waste time and resources
in applying strategies that are deemed to be ineffective for a particular seed.

To achieve this, we introduce a function that evaluates the effectiveness of
a strategy s on a test case t based on the fraction of the number of new ex-
plored paths (#newpaths) and the number of times the strategy s is applied to
t (#executions).

eff(s, t) =
#newpaths
#executions

Intuitively, the greater the eff(s, t) is, the more effective the mutation strategy
s is on this test case.

Algorithm 1 summarizes the details of the concept. The inputs of the algo-
rithm are: (1) one seed program (t), (2) the set of mutation strategies that can

Pr
e-p

rin
t

10 C. Mitropoulos et al.

be potentially applied to t, (3) an integer constant k indicating the number of
top strategies exploring new paths, (4) the effectiveness scores of the strategies
from the last time the t was processed, and (5) a bound value. Based on these
inputs, our algorithm operates as follows. If it is the first time we process the
given test case (which indicates that we do not have the effectiveness scores
from previous runs, i.e., scores = nil, line 1), the algorithm applies all available
strategies and computes their scores (lines 2–4). Then, the algorithm computes
the bound value, which is used as an indicator of whether a strategy should be
selected or not the next time we will process the seed. This bound value is the
result of the GetKthScore function, which sorts the list of effectiveness scores in
a descending order and then returns the score of the kth strategy.

If the given test case has been previously processed, the algorithm iterates all
mutation strategies and applies only those whose effectiveness score is greater or
equal to the bound (line 8). Practically, this means that the algorithm performs
the top-k mutation strategies with the greatest effectiveness scores as computed
in the previous run of the given seed. To prevent our algorithm from applying the
same top-k strategies all the time, when the current effectiveness score eff(s, t)
of an executed mutation strategy is lower than the value of bound, the algorithm
updates bound as eff(s, t) (lines 12-13). Conceptually, updating and lowering
bound gives the opportunity to other strategies to take the place of a strategy
currently included the top-k list (assuming the condition at line 9 holds).

3.3 Fuzzol
We have implemented fuzzol, an AFL-based fuzzer to test the Solidity compiler.
We plan to make our fuzzer publicly available, concurrently with this paper’s
publication. We have developed our novel syntax-aware mutation together with
its three distinct strategies in C/C++. Furthermore, we have adapted Supe-
rion’s [44] tree-based and enhanced dictionary-based mutation strategies (also
written in C/C++) to handle smart contracts and included them in our im-
plementation. Beyond that, fuzzol also employs other common grammar-blind
strategies [37] such as bit/byte flips and interesting values. Finally, fuzzol fol-
lows our prioritization algorithm to identify and apply strategies that are effec-
tive for a particular seed in the way we discussed in the previous section.

We built the Solidity grammar using ANTLR 4. Even though an ANTLR
grammar for Solidity exists, it is incomplete and does not support the latest
versions of the Solidity compiler. Thus, we have enriched the grammar adding
more than 200 lines of code containing new grammar rules.

4 Evaluation
We evaluate fuzzol by examining multiple releases of the Solidity compiler,
seeking answers to the following research questions:

RQ1 Is fuzzol effective in finding bugs in the Soldity compiler?
RQ2 How effective is our syntax-aware mutation when compared to grammar-

blind strategies?
RQ3 How effective is fuzzol when compared to the state-of-the-art fuzzers?
RQ4 Does our prioritization algorithm speed up the fuzzing process?

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 11

Table 1: Total bugs discovered in all solc versions by fuzzol. Bugs are grouped
in categories based on their root cause.

Category Total Fixed Confirmed (Unfixed)
Verification 5 5 0
ABI encoding 2 2 0
Inline assembly 3 3 0
Data structures & functions 8 7 1
Optimization 1 0 1
Total 19 17 2

4.1 Evaluation Setup
We focused on the last 33 Solidity versions, i.e., from solc-v0.5.11 to solc-v0.8.17.
We excluded solc-v0.8.1, solc-v0.8.2, and solc-v0.8.14 because we were
not able to properly set them up due to configuration problems. Each compiler
version contains 230k LoC on average.

Our initial corpus of seeds was populated by the test cases coming from the
aforementioned versions. We extracted small test cases (less than 1 kB – recall
that using small and targeted seeds is preferred in compiler testing [42]) that
explore all the different functionalities from every version we tested. We gathered
1.5k test cases in total, each containing 10 LoC on average.

4.2 RQ1: Discovering Bugs
fuzzol triggered several crashes. We examined the crashes to identify their
source and find potential bugs in the Solidity compiler. Table 1 summarizes our
results. fuzzol identified 19 bugs in total, which we reported to the development
team of Solidity. The team was already aware of some bugs. For the unknown
bugs (enlisted in Appendix A), there were prompt fixes (∼6 hours after our
report). Note also, that our testing campaign helped identify two performance
issues [4,3]. We further classified the discovered bugs based on their root cause.
In the following, we describe the categories that we have identified.

Verification-related bugs. As we discussed in Section 2.1, solc enables
formal verification through the SMTChecker module. We have found that several
contracts that invoke this module can lead to compiler crashes. By examining
these cases we have identified five distinct bugs. As an example of this bug
category, consider again the first issue discussed in Section 2.2.

ABI Encoding Bugs. Using the ABIEncoder module, solc encodes and
decodes various elements of a contract (e.g., structs) into other formats such as
JSON. fuzzol was able to identify two bug instances related to ABI encoding.
As an example, consider the following test case:
1 function f() public {
2 mapping(uint=>uint)public memory x;
3 }

This test case calls the mapping function, which can be used to store data
in the form of key-value pairs (both uint in our case). Our AST leaf node
change strategy replaced the second leaf of uint with a new leaf uint[1000000],
which comes from another contract. The corresponding mutant triggered a “map-
ping used outside of storage” error in solc. This happens because when the

Pr
e-p

rin
t

12 C. Mitropoulos et al.

ABIEncoder attempts to encode the elements of the contract, it does not pre-
vent the processing of an out-of-bounds array.

The bug above highlights that combining individual characteristics of two
contracts (i.e., through the AST leaf node change strategy) can result in test
cases with unique features that are more likely to trigger bugs. For example, it
is highly unlikely for a generator to produce the construct uint[1000000].

Inline Assembly-related Errors. As discussed in Section 2.1, contracts
can have direct access to the EVM through solc’s inline assembler. In Solidity,
inline assembly is marked by the assembly { ... } statement. Inside the curly
braces, developers can utilize variable declarations, literals, opcodes and more.
We observed that in three occasions the compiler did not handle such features
in a correct manner. As an example, consider a contract that assigns one integer
variable to another in inline assembly:
1 assembly {
2 uint x; uint y;
3 x := y
4 }

Our operator, statement and data type change strategy, changed the type of x
from uinit into a calldata type. When solc versions 0.6.4 and 0.6.8 attempted
to compile the code above they both crashed. This is because there was a bug
in the assignment implementation of the calldata types.

Bugs in Data Structures and Functions. We have discovered bugs in
the implementations of various Solidity data structures and modules. Overall,
fuzzol found eight bugs coming from this category.

We have already discussed one of theses issues in Section 2.2. (bug in array
handling). Our AST leaf node change strategy helped reveal this bug in the
following manner. It collected a large integer number from a leaf of another
contract and substituted the boundary of the array with this number. When
processing the corresponding test case during the code generation stage, the
compiler crashed because there were no checks regarding array limits.

Optimization Bugs. We identified one bug related to compiler optimiza-
tions. The code that led to the identification of the issue contained a hex value,
that was replaced with another, large, hex value, i.e., hex"344383800E6110....
In this case, our AST Leaf Node Change strategy replaced the leaf node of the hex
value, and replaced it with another hex value node, existed in another contract.

4.3 RQ2: Comparing Syntax-Aware and Grammar-Blind Strategies

We compare our strategies (described in Section 3.1) with standard grammar-
blind strategies. We focus on the state-of-the-art strategies offered by AFL,
namely: bit/byte flips, arithmetics and interesting values. To do so, we com-
pare the number of unique test cases each strategy generates, i.e., the test cases
that trigger new paths, over a 48 hour window. Note that comparing test cases
is a standard way to evaluate strategies [36,47,31]. Also, collecting seeds for 48
hours is consistent with previous work where the time window for the experi-
ments was roughly 24 hours [13,35]. Furthermore, we compare the strategies in

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 13

0 h 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h
Time

0

200

400

600

800

1000

1200

1400

1600

Te
st

 C
as

es

Bit/Byte Flips
Operators, Statements and Datatypes Change
AST Leaf Node Change
Inline Assembly Node Change
Arithmetics / Interesting values

Fig. 5: Test cases produced for solc
0.8.13 by each strategy.

Arithmetics /
Interesting values

Bit/Byte Flips Operators,
 Statements and

 Datatypes Change

AST Leaf
Node Chnage

Inline Assembly
 Node Change

Fuzzing Strategies

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 C
as

es
(

%
)

Fig. 6: The ratio of interesting test cases
per fuzzer to the total number of gen-
erated test cases.

terms of effectiveness. We define the effectiveness of a mutation strategy as the
ratio of unique test cases to the total number of test cases it generates [31,32,9].

Figure 5 presents the evolution of the generated test cases by each strategy
for solc v0.8.16. We observed very similar trends in other compiler versions and
omit the corresponding results for brevity. Our results indicate that all mutation
strategies show a linear growth with different coefficients. Our operator, state-
ment and data type change strategy turns out as the most productive one at
all times. Notably, after 48 ours it has generated 250 test cases more than the
bit/byte flips strategy (the second most productive), and 1000 more than the
arithmetics strategy (the least productive). Our two other syntax-aware strate-
gies come in the third and fourth place respectively.

Our results indicate that our strategies offer an increasing rate of producing
interesting test cases. Another observation is that grammar-blind strategies can
be productive when fuzzing a compiler, an observation made also by the authors
of Superion [44], who examined different interpreters.

Focusing on effectiveness we observed that our operator, statement and data
type change strategy is the most effective one. Figure 6 shows box-plots that
present the effectiveness of each strategy for all 32 solc versions. The green line
inside every box plot indicates the corresponding median value. The operator,
statement and data type change strategy has the highest ratio overall (30–40%).
Then, bit/byte flipping is the second best strategy with an overall ratio of 28–
32%. Our AST leaf node change strategy has a (23–28%) ratio, and the inline
assembly node change strategy comes next with a 15–20% ratio. Finally, the
arithmetic strategy ratio is the lowest (10–15%).

4.4 RQ3: Comparison with State-of-the-Art Fuzzers

We compare fuzzol with four AFL-based fuzzers, namely: Superion [44], the
AFL-compiler-fuzzer [28], AFLFast [13] and MOpt-AFL [35]. Appendix B presents
the design differences between fuzzol and the fuzzers above. Unfortunately,
given the time restrictions, we were not able to compare fuzzol with other
grammar-aware fuzzers, such as NAUTILUS [9], IFuzzer [43], GRIMOIRE [11].
This is because these fuzzers are not AFL-based, thus it requires much engineer-
ing effort and sufficient time to make them run for Solidity.

Pr
e-p

rin
t

14 C. Mitropoulos et al.

0.
8.
0

0.
8.
3

0.
8.
4

0.
8.
5

0.
8.
6

0.
8.
7

0.
8.
15

0.
8.
16

Solidity Compiler Versions

0

1

2

3

4

Bu
gs

Fuzzol
Superion
AFL-compiler-fuzzer
AFLFast
Mopt-AFL

Fig. 7: Bugs across 14 of the last solc
versions.

0 h 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h
Time

1000

2000

3000

4000

5000

6000

Te
st

 C
as

es

Fuzzol(k=3)
Fuzzol(k=5)
Fuzzol(k=8)
Fuzzol(k=10)
Fuzzol(k=15)
Fuzzol(k=20)
Superion
AFL-compiler-fuzzer
AFLFast
Mopt

Fig. 8: The ratio of interesting test cases
per strategy to the total number of gen-
erated test cases.

To perform our comparison we focus on two dimensions: (1) the bug finding
capabilities of each tool and (2) code coverage. To gather our results, we run all
fuzzers for 48 hours. All experiments were run on a machine with an Intel Xeon
CPU E5-2650v3 2.30GHz processor with 6 logical cores and 64 GB of RAM.

Figure 7 presents the bugs discovered by each tool for the last 12 solc ver-
sions. From versions 0.8.0 to 0.8.7, all tools reported crashes related to existing
bugs. In all cases, fuzzol found more bugs than any other fuzzer. From ver-
sions 0.8.8 to 0.8.13 there are no bugs found by the fuzzers. While in versions
v0.8.15 and v0.8.16 fuzzol identified one optimization issue, while the other
four fuzzers were not able to detect any bugs.

We measured how much code is exercised by each tool by examining three
solc versions. To do so, we used afl-cov [38]. Table 2 presents the line, function,
and branch coverage per fuzzer – version.

Overall, we found that on average, fuzzol was able to cover ×1.05 (i.e.,
5.4% code coverage improvement) more lines than Superion, ×1.08 (i.e., 8.5%
code coverage improvement) more lines than AFL-compiler-fuzzer, ×4.40 more
lines than AFLFast (i.e., 230.6% code coverage improvement) and ×5.80 more
lines than MOpt (i.e., 408.8% code coverage improvement). Notably, given the
compiler’s large codebase, an 1% code coverage improvement translates to cov-
ering 2,220 more lines of code. The situation is similar in the case of functions
and branches where fuzzol outperformed all fuzzers. In particular, our results
show that on average, fuzzol invoked ×1.04 more functions than Superion,
×1.08 more functions than AFL-compiler-fuzzer, ×2.4 more than AFLFast and
MOpt. Finally, in terms of branch coverage, fuzzol was ×1.03 better than Su-
perion, ×1.07 better than AFL-compiler-fuzzer, ×2.56 better than AFLFast and
×3.2 better than MOpt.

All the above clearly indicate that the techniques implemented in fuzzol lead
to better results compared to the-state-of-the-art, in terms of both bug-finding
capabilities and code coverage improvement.

4.5 RQ4: Mutation Strategy Prioritization Algorithm

To evaluate our mutation strategy prioritization algorithm (Section 3.2), we
run different fuzzol instances with different settings, i.e., we tried out different

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 15

Table 2: Line, function and branch coverage for three of the latest solc versions.
Line Coverage (%) Function Coverage (%) Branch Coverage (%)

Tool v0.8.16 v0.8.15 v0.8.13 v0.8.16 v0.8.15 v0.8.13 v0.8.16 v0.8.15 v0.8.13
fuzzol 48.1 48.3 48.0 21.6 21.8 21.1 28.5 28.5 28.3
Superion [44] 46.3 45.0 46.1 20.6 20.5 20.6 28.1 28.0 27.5
AFL-compiler-fuzzer [28] 45.2 44.3 45.6 19.6 20.5 20.1 25.7 26.1 26.5
AFLFast [13] 15.2 15.0 15.4 <10 <10 <10 11.2 <10 11.3
MOpt [35] <10 <10 <10 <10 <10 <10 <10 <10 <10

values of k, which is an input of our algorithm. Recall that k indicates the number
of top strategies exploring new paths (see Section 3.2). Focusing on performance,
we examined the number of unique test cases generated over time. Further, we
compared fuzzol’s performance against the corresponding ratios of the other
four tools mentioned earlier.

Apart from the three strategies discussed in Section 3, fuzzol also incor-
porates all grammar-blind strategies of AFL and the grammar-based strategies
implemented in Superion [44], namely, enhanced dictionary-based mutation and
tree-based mutation, counting 20 strategies in total. Therefore, running our algo-
rithm with k = 20 is equivalent to running fuzzol with the default, AFL-based
prioritization algorithm, i.e., running all the strategies in the same order.

We run all fuzzers on solc version 0.8.16 for 48 hours. In the case of fuz-
zol we used 6 instances with different k’s. Figure 8 illustrate our results. For
the first four hours, all fuzzers add interesting test cases in the queue. From
that point and on, all fuzzol ’s instances, except for fuzzol ’s instance with
k = 3, generate more interesting test cases than all the other fuzzers. After 24
hours, five fuzzol instances take the lead as they generate 1,100 test cases than
Superion, 1,500 test cases than AFL-compiler-fuzzer, and 2,000 test cases than
both AFLFast and MOpt-AFL. Observe that k = 5 and k = 8 instances are the
most effective ones as they yield 1,100 more test cases than the baseline, i.e.,
k = 20. We observed similar trends in all the remaining compiler versions.

Our results indicate that our prioritization algorithm further boosts the
fuzzing process. First, as we observe in Figure 8 the baseline fuzzol instance
(the black thick line) is faster than all the other fuzzers, something that is consis-
tent with our RQ3 findings (Section 4.4). However, it is slower than the instances
that employ the algorithm (except the one with k = 3). This indicates that when
our algorithm is used with values of k that are neither too high nor too low (e.g.,
k = 5, k = 8), there is a significant benefit in the performance of the fuzzing
process, because fuzzol produces unique test cases much faster.

5 Related Work

Grammar-aware mutation and generation. We have already discussed the
basic limitations of the strategies employed by Superion [44] in Section 2.3.
IFuzzer [43] is a grammar-aware fuzzer that uses genetic programming [45] to
compose new seeds for the JavaScript interpreter. Holler et al. [29] have proposed
a similar approach. Specifically, they extract code fragments form sample code
and use them to mutate test cases. On the grammar-aware generation front,
NAUTILUS [9] can generate seeds containing valid code and then perform tree-

Pr
e-p

rin
t

16 C. Mitropoulos et al.

based mutations on them (see also Section 2.3). Then, the corresponding mutants
can be used to test languages such as PHP and JavaScript. Notably, NAUTILUS
works without an initial set of test cases and generates inputs from scratch with-
out taking into account different language characteristics. Recall that utilizing
the existing test cases of a compiler helps exercising interesting compiler features
(see Section 3). GRIMOIRE [11] extends NAUTILUS adding more mutations
including string replacements, recursive replacements, and more.

Compared to this body of work, fuzzol is the first fuzzer for the Solidity lan-
guage, which implements novel syntax-aware strategies that takes into account
Solidity’s grammar and syntax rules.

Testing compilers. Compiler testing approaches have been extensively sur-
veyed [21]. We enumerate a number of methods related to our work. Csmith [49]
automatically generates C programs that are free from undefined behavior. Ran-
domized differential testing has also been used to examine production compil-
ers such as GCC and Clang [41,34]. The AFL-compiler-fuzzer [28] uses a text-
based mutation to test different compilers, including solc (as we discussed in
Section 2.3). Our evaluation indicated that our approach is more effective and
achieves better results in terms of both bug-finding capabilities and code cover-
age improvement than the AFL-compiler-fuzzer.

Advanced scheduling. There are several approaches that provide more
dynamic and effective power schedules for seeds prioritization. MOpt [35] em-
ploys a modified particle swarm optimization algorithm to make an effective use
of the mutation scheduler. To further improve scheduling, Cerebro [33] takes
into account elements such as coverage, and execution time. Furthermore, Cha
et al. [17] employ symbolic analysis on execution traces to maximize effective-
ness. AFLGo [12] and Hawkeye [20] introduce power schedules able to direct
the fuzzing process towards specific locations of a programs (directed fuzzing),
based on distance metrics. AFLFast [13] and fair-fuzz [32], include a scheduling
algorithm that prioritizes rarely-exercised branches to achieve higher coverage.

fuzzol implements a novel prioritization algorithm that is able to identify
mutations that can achieve better results in terms of exploring new paths. Con-
ceptually, our algorithm instead of prioritizing seeds, it prioritizes mutations.

6 Conclusion

We have presented fuzzol, a greybox fuzzer for the Solidity compiler. fuz-
zol comes with two key components for boosting the effectiveness of Solidity
compiler fuzzing: (1) a syntax-aware mutation for producing syntactically-valid
mutants that get past the syntactic checks of the compiler (and thus exploring
deeper code), and (2) a mutation strategy prioritization algorithm that treats
each seed differently, according to the mutations that are most suitable for that
specific seed. Our in-depth evaluation on 33 compiler releases indicates that fuz-
zol is superior to four state-of-the-art fuzzers in terms of bug-finding capability,
improved code coverage, and test input generation. Finally, our prioritization
algorithm makes fuzzol generate unique test inputs almost one day faster.

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 17

References

1. The Counterparty financial platform, https://counterparty.io/, [Online; ac-
cessed 15-January-2023]

2. Hedera hashgraph, [Online; accessed 15-January-2023]
3. Optimized contract crash. https://github.com/ethereum/solidity/issues/12840,

[Online; accessed 05-January-2023]
4. Optimized contract freeze. https://github.com/ethereum/solidity/issues/12848,

[Online; accessed 03-January-2023]
5. Solidity, https://docs.soliditylang.org/en/v0.8.0/, [Online; accessed 03-

January-2023]
6. Solidity compiler - issues catalog, https://github.com/ethereum/solidity/

issues, [Online; accessed 15-January-2023]
7. The Solidity contract-oriented programming language Github repository, https:

//github.com/ethereum/solidity, [Online; accessed 05-January-2023]
8. Z3 GitHub repository (2021), https://github.com/Z3Prover/z3, [Online; ac-

cessed 20-January-2023]
9. Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A., Teuchert, D.:

NAUTILUS: fishing for deep bugs with grammars. In: Proceedings of the 26th
Annual Network and Distributed System Security Symposium (NDSS) (2019)

10. Atlidakis, V., Godefroid, P., Polishchuk, M.: Restler: Stateful rest api fuzzing.
In: Proceedings of the 41st International Conference on Software Engineering. p.
748–758. ICSE ’19, IEEE Press (2019)

11. Blazytko, T., Aschermann, C., Schlögel, M., Abbasi, A., Schumilo, S., Wörner,
S., Holz, T.: Grimoire: Synthesizing structure while fuzzing. In: Proceedings of
the 28th USENIX Conference on Security Symposium. p. 1985–2002. USENIX
Association, USA (2019)

12. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. p. 2329–2344. CCS ’17, Association for Computing Ma-
chinery, New York, NY, USA (2017)

13. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
markov chain. p. 1032–1043. CCS ’16, Association for Computing Machinery, New
York, NY, USA (2016)

14. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
Whitebox fuzz testing in production. In: Proceedings of the 2013 International
Conference on Software Engineering. p. 122–131. ICSE ’13, IEEE Press (2013)

15. Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter:
A smart contract security analyzer for composite vulnerabilities. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 454–469. PLDI 2020, Association for Computing Machinery,
New York, NY, USA (2020)

16. Browne, R.: Ether, the world’s second-biggest cryptocurrency, is clos-
ing in on an all-time high (2021), https://www.cnbc.com/2021/01/19/
bitcoin-ethereum-eth-cryptocurrency-nears-all-time-high.html, [Online;
accessed 20-January-2023]

17. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy. p. 725–741. SP
’15, IEEE Computer Society, USA (2015)

Pr
e-p

rin
t

18 C. Mitropoulos et al.

18. Chaliasos, S., Gervais, A., Livshits, B.: A study of inline assembly in solidity smart
contracts. Proc. ACM Program. Lang. 6(OOPSLA2) (oct 2022)

19. Chaliasos, S., Sotiropoulos, T., Spinellis, D., Gervais, A., Livshits, B., Mitropoulos,
D.: Finding typing compiler bugs. In: Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
p. 183–198. PLDI 2022, ACM, New York, NY, USA (2022)

20. Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., Liu, Y.: Hawkeye: Towards
a desired directed grey-box fuzzer. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. p. 2095–2108. CCS ’18,
Association for Computing Machinery, New York, NY, USA (2018)

21. Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., Zhang, L.: A survey
of compiler testing. ACM Comput. Surv. 53(1) (Feb 2020)

22. Cordeiro, L., Fischer, B., Marques-Silva, J.: Smt-based bounded model checking for
embedded ansi-c software. In: Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering. p. 137–148. ASE ’09, IEEE Com-
puter Society, USA (2009)

23. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. p. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

24. Ghaleb, A., Pattabiraman, K.: How effective are smart contract analysis tools?
evaluating smart contract static analysis tools using bug injection. In: Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. p. 415–427. ISSTA 2020, ACM, New York, NY, USA (2020)

25. Godefroid, P.: Fuzzing: Hack, art, and science. Commun. ACM 63(2), 70–76 (Jan
2020)

26. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: Whitebox fuzzing for security testing:
Sage has had a remarkable impact at microsoft. Queue 10(1), 20–27 (Jan 2012)

27. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
max: Analyzing the out-of-gas world of smart contracts. Commun. ACM 63(10),
87–95 (Sep 2020)

28. Groce, A., van Tonder, R., Kalburgi, G.T., Le Goues, C.: Making no-fuss compiler
fuzzing effective. In: Proceedings of the 31st ACM SIGPLAN International Confer-
ence on Compiler Construction. p. 194–204. CC 2022, Association for Computing
Machinery, New York, NY, USA (2022)

29. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: Proceedings of
the 21st USENIX Conference on Security Symposium. p. 38. Security’12, USENIX
Association, USA (2012)

30. Jiang, B., Liu, Y., Chan, W.K.: Contractfuzzer: Fuzzing smart contracts for vulner-
ability detection. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. p. 259–269. ASE 2018, Association for Com-
puting Machinery, New York, NY, USA (2018)

31. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. p. 2123–2138. CCS ’18, Association for Computing Machinery, New
York, NY, USA (2018)

32. Lemieux, C., Sen, K.: Fairfuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In: Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering. p. 475–485. ASE 2018, Association
for Computing Machinery, New York, NY, USA (2018)

33. Li, Y., Xue, Y., Chen, H., Wu, X., Zhang, C., Xie, X., Wang, H., Liu, Y.: Cerebro:
Context-aware adaptive fuzzing for effective vulnerability detection. In: Proceed-

Pr
e-p

rin
t

Syntax-Aware Mutation for Testing the Solidity Compiler 19

ings of the 2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. p. 533–544.
ESEC/FSE 2019, ACM, New York, NY, USA (2019)

34. Livinskii, V., Babokin, D., Regehr, J.: Random testing for C and C++ compilers
with YARPGen. Proc. ACM Program. Lang. 4(OOPSLA) (Nov 2020)

35. Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.H., Song, Y., Beyah, R.: MOpt: Optimized
mutation scheduling for fuzzers. In: Proceedings of the 28th USENIX Conference
on Security Symposium. p. 1949–1966. USENIX Association, USA (2019)

36. Lyu, C., Ji, S., Zhang, X., Liang, H., Zhao, B., Lu, K., Wang, T., Beyah, R.: Ems:
History-driven mutation for coverage-based fuzzing. In: 29th Annual Network and
Distributed System Security Symposium) (2022)

37. M. Zalewski: American fuzzy lop. https://lcamtuf.coredump.cx/afl/ (2013),
online accessed; 13-January-2023

38. Rash, M.: afl-cov - AFL fuzzing code coverage (2021), https://github.com/mrash/
afl-cov, [Online; accessed 06-January-2023]

39. Rigger, M., Su, Z.: Testing database engines via pivoted query synthesis. In: 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). pp. 667–682. USENIX Association (Nov 2020)

40. Sotiropoulos, T., Chaliasos, S., Atlidakis, V., Mitropoulos, D., Spinellis, D.:
Data-oriented differential testing of object-relational mapping systems. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). pp.
1535–1547 (2021)

41. Sun, C., Le, V., Su, Z.: Finding and analyzing compiler warning defects. In: Pro-
ceedings of the 38th International Conference on Software Engineering. p. 203–213.
ICSE ’16, Association for Computing Machinery, New York, NY, USA (2016)

42. Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in GCC
and LLVM. In: Proceedings of the 25th International Symposium on Software Test-
ing and Analysis. p. 294–305. ISSTA 2016, Association for Computing Machinery,
New York, NY, USA (2016)

43. Veggalam, S., Rawat, S., Haller, I., Bos, H.: Ifuzzer: An evolutionary interpreter
fuzzer using genetic programming. In: Proceedings of the 21st European Sym-
posium on Research in Computer Security. Lecture Notes in Computer Science,
vol. 9878, pp. 581–601. Springer (2016)

44. Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: Grammar-aware greybox fuzzing.
In: Proceedings of the 41st International Conference on Software Engineering. p.
724–735. ICSE ’19, IEEE Press (2019)

45. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering. p. 364–374. ICSE ’09, IEEE, USA (2009)

46. Wüstholz, V., Christakis, M.: Harvey: A greybox fuzzer for smart contracts. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p.
1398–1409. ESEC/FSE 2020, Association for Computing Machinery, New York,
NY, USA (2020)

47. Yan, S., Wu, C., Li, H., Shao, W., Jia, C.: Pathafl: Path-coverage assisted fuzzing.
In: Proceedings of the 15th ACM Asia Conference on Computer and Communica-
tions Security. p. 598–609. ASIA CCS ’20, Association for Computing Machinery,
New York, NY, USA (2020)

48. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c
compilers. SIGPLAN Not. 46(6), 283–294 (Jun 2011)

Pr
e-p

rin
t

20 C. Mitropoulos et al.

49. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. p. 283–294. PLDI ’11, Association for
Computing Machinery, New York, NY, USA (2011)

50. Zubairy, R.: Create a blockchain app for loyalty points with Hyperledger Fabric
Ethereum Virtual Machine (2018), [Online; accessed 06-January-2023]

A Bugs Previously Unknown to Solidity Developers

In the table below, we enumerate all bugs that (1) fuzzol identified and (2)
were unknown to Solidity developers.

Table 3: Category and references of the bugs that were unknown to Solidity
developers.

Category URL
Data structures & functions github.com/ethereum/solidity/issues/11677
Data structures & functions github.com/ethereum/solidity/issues/10502
Data structures & functions github.com/ethereum/solidity/issues/7550
Inline assembly github.com/ethereum/solidity/issues/9936
Inline assembly github.com/ethereum/solidity/issues/11680
Verification github.com/ethereum/solidity/issues/10798
Verification github.com/ethereum/solidity/issues/7546

B Differences Between FUZZOL and Fuzzers Included in
Our Evaluation

In the following table, we present the main design differences between fuz-
zol and the related fuzzers included in our evaluation. Note that all fuzzers are
AFL-based.

Table 4: Point-to-point comparison between fuzzol and the fuzzers included in
our evaluation. GB: grammar-blind, GA: grammar-aware, TM: text-mutation

Fuzzer Mutation Advanced Schedule Target Program
Superion [44] GA, GB ✗ JavaScript interpreter

AFL-compiler-fuzzer [28] TM ✗ Solidity, Move, Fe, Zig
AFLFast [13] GB ✓ Binaries
MOpt [35] GB ✓ Binaries
fuzzol GA, GB ✓ Solidity

