
Pr
e-
pr
in
t

Noname manuscript No.
(will be inserted by the editor)

PDGuard: An Architecture for the Control and Secure
Processing of Personal Data

Dimitris Mitropoulos · Thodoris
Sotiropoulos · Nikos Koutsovasilis ·
Diomidis Spinellis

Abstract Online personal data are rarely, if ever, effectively controlled by the
users they concern. Worse, as demonstrated by the numerous leaks reported
each week, the organizations that store and process them fail to adequately
safeguard the required confidentiality. In this paper we propose pdguard, a
framework that defines, prototypes, and demonstrates an architecture and an
implementation that address both problems. In the context of pdguard, per-
sonal data are always stored encrypted as opaque objects. Processing them can
only be performed through the pdguard Application Programming Interface
(api), under data and action-specific authorizations supplied online by third-
party agents. Through these agents end-users can easily and reliably authorize
and audit how organizations use their personal data. A static verifier can be
employed to identify accidental api misuses. Following a security by design
approach, pdguard changes the problem of personal data management from
the, apparently, intractable problem of supervising processes, operations, per-
sonnel, and a large software stack to that of auditing the applications that use
the framework for compliance. We demonstrate the framework’s applicability
through a reference implementation, by building a pdguard-based e-shop, and
by integrating pdguard into the The Guardian newspaper’s website identity
application.

Dimitris Mitropoulos, Thodoris Sotiropoulos, Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business
E-mail: {dimitro, theosotr, dds}@aueb.gr

Nikos Koutsovasilis
Department of Informatics and Telecommunications
University of Athens
E-mail: sdi1500076@di.uoa.gr

Note: This is a pre-print of an article published in the International Jour-
nal of Information Security. The final authenticated version is available online at:
https://doi.org/10.1007/s10207-019-00468-5

Pr
e-
pr
in
t

2 Dimitris Mitropoulos et al.

1 Introduction

The protection of personal data in the digital world is clearly insufficient.
Numerous data breaches, which regularly come to light, indicate that orga-
nizations entrusted with personal data fail to secure them effectively against
internal and external threats [31, 37, 23]. Personal data breaches can affect
millions (e.g. when credit card details are obtained from a hacked database)
or particular individuals (e.g. when an officer investigates his girlfriend’s ac-
tivities on digital government records). Unauthorized disclosure of personal
data violates privacy rights, breeds distrust between organizations holding the
data and the people associated with it, burdens and distracts both parties,
and interferes with the functioning of the digital economy. In this paper we in-
troduce pdguard, a framework that enables the control and secure processing
of personal data (i.e. protecting them from potential misuses).

Personal data is any information that can be used to identify, contact, or
locate a person in a specific context [8, 42, 21, 33]. In this paper we use the
terms data subject to refer to a person associated with personal data, and data
controller to refer to a public or private organization holding and processing
those data. The protection of personal data is insufficient, because the current
framework for its protection is opaque and ineffective.

Motivation The protection of personal data is opaque on four layers:
security policies, their implementation, the links between policies and enforce-
ment mechanisms, and authorized and unauthorized uses of personal data.
Many of these elements are not visible to outsiders. When they are visible
they may be inscrutable (as is often the case with security policies), too coarse
grained (as happens with the obligatory reporting of data breaches), and ex-
pensive to interpret, audit, and distill into actionable information. Adding
insult to injury, visibility is often limited to internal auditors and regulators,
with data subjects typically kept in the dark regarding the handling of their
personal data.

Entire books can (and have) been written on why the protection of personal
data is ineffective [20, 53, 13]. In the context of our work, the reasons can be
summarized as follows. First, excessive trust is placed on the data controller,
which results in valuable data being protected by a single, often insufficiently
resourced entity. Then, the manual enforcement of security policies is difficult
and costly to standardize and verify, and also varies in effectiveness according
to the training, motivation, and ability of the personnel that applies them.
Also, the technical means of policy enforcement are typically applied on the
(too many) leaf nodes of a vulnerability tree (e.g. by disabling storage devices
on every usb port). This results in a large, porous, and insufficiently under-
stood attack surface. Furthermore, the protection’s opaqueness we described,
hinders informed consumer choice, democratic accountability, regulation (self-
and by outsiders), and the functioning of market-based incentives.

Currently, any control data subjects may have over their personal data
is often too coarse (typically an all or nothing proposition), confusing (as it
varies with each data controller or even between applications), and manually

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 3

applied according to the willingness or even whim of each data controller.
Even though there are many steps towards a more user-centric privacy identity
management approaches [2, 1, 22, 16, 52], in many countries, data controllers
handle personal data as they see fit, while numerous online businesses gather,
analyze and use them at best within the limits of an inscrutable take-it-or-
leave-it personal data policy, which very few subjects bother to read [10, 28,
36, 27].

Overview pdguard is an it system architecture backed by an application
programming interface (api) and an open-source software reference implemen-
tation that aims to provide security, transparency, and effective control in the
handling of personal data. Within the context of pdguard, personal data are
always stored encrypted as an opaque object. Decryption can only be per-
formed through the pdguard api, under data and action-specific authoriza-
tions supplied by a third-party, an escrow agent, which is an entity trusted by
both the data subject and the controller. By interacting with escrow agents,
data subjects can reliably authorize and audit how data controllers use their
personal data.

When data subjects establish a relationship with a data controller they
supply the controller with the address of the escrow agent of their choice for
the specific relationship. For data subjects not interested to setup a relation-
ship with an external escrow agent, pdguard uses a default internal escrow
agent, which offers the same functionality and implements the data controller’s
personal data policy. Data subjects may decide to choose diverse external es-
crow agents so that they can apply different policies on different transactions
(according e.g. to the type of the personal data and the applications that re-
quest them). The data controller will send to the escrow agent data storage
and access requests according to its business needs, its personal data protec-
tion policy, as well as legal and regulatory requirements. In turn, data subjects
will authorize the requests as they see fit.

The data controller software applications perform data encryption and de-
cryption on-demand with keys supplied each time through the escrow agent’s
authorization service, in response to authenticated entity requests. In essence,
we take a “defense-in-depth” [61, 18] approach by storing encrypted entities
and corresponding keys in different locations. Each escrow agent allows data
subjects to associate permissions with specific data types, data uses, and more.
For example, a data subject, Mary, can allow a data controller, Acme, to use
her postal address (data type) for labeling (data use) a gadget she ordered, but
not for sending her advertisements (data use). The data regarding all autho-
rizations granted by an agent are made available to the data subjects, so that
they can review them or revoke future uses. Dedicated secure key servers and
the long-term caching of keys limit the performance impact of key distribution.

A static code verification tool can be employed to identify accidental frame-
work misuses within an application’s software code. In particular, developers
can review data controller applications and check if the decrypted data re-
trieved through the pdguard api, are used as intended (recall that permissions
are associated with data uses).

Pr
e-
pr
in
t

4 Dimitris Mitropoulos et al.

Contributions pdguard provides a way for data subjects to control their
online personal data, and at the same time protect the data from diverse
threats associated with them (see Section 2.2). There have been several ap-
proaches to provide the former or latter functionality, (see Section 7) but, to
the best of our knowledge, no approaches combine the two and exploit the
associated synergies. Specifically, by combining the two, pdguard reduces the
complexity, the implementation and the verification effort over a system that
provides either the former or the latter functionality.

pdguard addresses the opaqueness in the handling of personal data, by
defining an api and an escrow agent that data controllers shall use for pro-
cessing them. This provides data subjects with a clear unified view of the se-
curity policy and its implementation through e.g. the escrow agent’s web user
interface. It also allows data subjects to review how their personal data were
used. Furthermore, adherence to the pdguard framework can be audited and
published, both at the level of data controllers and at the level of individual
software applications.

Following the “security by design” [63, 29, 11, 38, 58] approach, pdguard
improves the effectiveness of personal data protection in the following ways:

• It decentralizes trust and control by having numerous escrow agents of (hope-
fully) diverse implementations control the decryption keys. This empowers
data subjects with fine-grained control of how their personal data are used.

• It replaces a patchwork of manually enforced security policies with a stan-
dardized api that can be uniformly applied, monitored, and audited across all
data controllers and software applications.

• It reduces the attack surface and the risk of individual vulnerabilities of the
systems it is deployed on, through the decryption of personal data at the time
of their use. Note that, the escrow agent generates keys by taking into account
different data uses.

• It increases transparency in the handling of personal data. This allows data
subjects to choose among data controllers based on the concrete protection
of their personal data that they offer (adoption of pdguard and actual data
use), provides regulators with an easy way to establish whether personal data is
effectively protected, and allows market-based mechanisms to spread adoption
of competing pdguard implementations, escrow agents, and auditing services.

2 Background

pdguard brings together four entities under a threat model where data con-
trollers and users wish to safeguard their data against third party malicious
attacks. These entities are aligned with the ones that have been introduced in
the context of the personal data regulation of the European Union (i.e. the
General Data Protection Regulation (gdpr) [8]. Notably, gdpr recommends
that the development of applications incorporating personal data should follow
a “security by design” approach, which is compatible with pdguard.

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 5

2.1 Participating Entities

The entities that exist in the context of pdguard are the following.

1. Data Subject: The individual associated with personal data. This is the
entity whose privacy concerns restrict the permitted data processing oper-
ations. In some cases, we refer to data subjects simply as users.

2. Data Controller: A public or private organization that processes personal
data associated with data subjects. Examples include providers of e-commerce,
e-government, social networks, and other services.

3. Data Controller Applications: The data controller’s software systems that
process personal data. Such systems may handle interactive transactions,
back-office fulfilment, reporting, analytics, and relationship management.

4. Escrow Agent: A third party software application and service trusted by
both the data subject and the data controller to facilitate and monitor the
compliance of the data controller’s processing activities according to the
data subject’s instructions.

Note that in gdpr the entities that process personal data on behalf of the
controller are called “Data Processors”. In a situation like this, the applications
running on behalf of the data processor, should be treated in the same manner
as the data controller applications.

2.2 Threat Model

We define the threat model under which pdguard operates in terms of trust,
addressed and residual threats. Details on how threats are handled are given
in Section 5.4, “Security Analysis”.

In the pdguard framework (qualified) trust is placed on the participating
entities, namely the data controller, the data subject, and the escrow agent.
Specifically, we expect that data controller applications aim to respect the
authorizations that a data subject sets through an escrow agent to prevent
data misuse. We also assume that the developers of the various applications
will strive to use correctly the pdguard api. In particular, the data controller’s
applications must: (1) handle all personal data through the pdguard api, (2)
issue decryption requests with correctly specified data type and data use fields,
(3) avoid storing personal data locally (in memory or on non-volatile storage)
after using them, and (4) never use data or keys obtained for one purpose for
a different one (e.g. forward the data subject’s contact phone number to a
telemarketer).

The pdguard framework addresses diverse internal and external
threats. Malicious entities aim to exploit the data for purposes different
than those allowed by the law, the desire of the data subjects, and possible
agreement between data subjects and controllers. External threats include the
unauthorized access to the data controller infrastructure which would allow an
outsider to retrieve data, the misuse of personal data by advertising networks,
data brokers, online tracking, and more. In addition, they may include the
exploitation of an application by hackers, phishing, and malware. An internal

Pr
e-
pr
in
t

6 Dimitris Mitropoulos et al.

threat involves an employee’s behavior that puts personal data at risk, despite
the security policies and mechanisms that the data controller utilizes. Trans-
ferring files between work and personal computers, unauthorized application
use, and sharing work devices with third-parties without supervision, are some
indicative cases of such behaviors.

Although malicious data controllers are outside the scope of pdguard,
within its context misrepresentation and overreaching are controlled, neg-
ligence is mitigated, and adherence can be effectively verified through the
accompanying static code verification mechanism (see Section 3.4). Thus, re-
garding data controllers, the pdguard stance can be summed up as “trust, but
verify”. This improves upon the current state of the art in this area, which is
mainly based on trust.

Nevertheless, a number of residual threats remain. Notably, in an envi-
ronment with insufficient separation of roles, lax auditing, or sloppy key man-
agement, unauthorized administrators or developers might be able to leverage
the pdguard api to process personal data. Furthermore, the pdguard architec-
ture does not aim to prevent all attacks that target data controller applications
containing software vulnerabilities. There are specific web application attack
vectors that will fail because of the framework’s design. We examine such cases
in our “Security Analysis” section (5.4).

2.3 Use Case Scenario

Consider the following scenario, which we will use as a reference throughout the
rest of this paper. Alice visits a news and media website on a daily basis. She
decides to sign up and create a personal account to interact with other readers
in the website’s forum and receive email notifications with weekly digests.
Also, she wants to receive the printed version of a magazine, published by
the website for two years on a monthly basis. During her registration, Alice
submits the following credentials: name, surname, password, email, credit card
number and street address.

Alice wants only her name to be displayed on the forum’s pages and does
not want to receive emails from third party organizations screened by the web-
site. In addition, she wants to have the ability to update her address through
the website, and allow it to access her credit card automatically when her
magazine subscription ends.

Immediately, we can identify Alice as the data subject and the website as
the data controller. We can assume that the website runs diverse applications,
including the forum and the service where users can handle and update their
profiles. We can also assume that Alice has already chosen an escrow agent
through which she can specify the rules regarding the use of her personal data.

3 Architecture

Figure 1 presents a data processing system supported by the pdguard frame-
work. In this context, all personal data are stored encrypted as opaque objects
in the data controller. All data controller applications that perform db ac-
tionsinvolving personal data, have to use the pdguard api to perform the

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 7

Data Controller

Encrypted Storage

(1)

(2)

(3) (3)(4) (4)

Data
Subjects

External
Threats

encryptData (…)
decryptData (…)

select, update,
insert, etc.

authorization
request

authorization
request

Authorization
Service

Monitoring
Service

Key Storage
Authorization Data

Authentication Data
Event Logs

External Escrow Agent

PDGuard Library

implements
the API

Internal
Escrow Agent

internal escrow agents share
the same functionalities with
external ones

PDGuard API

Internal
Threats

data subjects can monitor all actions
related to their personal data

data subjects can set
authorization rules regarding
the usage of their data

Static Verifier Data Controller Application

detects accidental
misuses

Fig. 1: A data processing system supported by PDGuard. Personal
data are stored encrypted as opaque objects. Every time a db action (1)
involving personal data is performed, data controller applications invoke the
pdguard api (2). In turn, the api sends authorization requests (3) to the
corresponding escrow agent (can be either external or internal). If a request
conforms to the rules set by the data subject, the agent responds with the
required decryption key (4).

corresponding encryption or decryption. When an api call is invoked, an au-
thorization request is sent to the corresponding escrow agent that maintains
the encryption key (an agent can be either external or internal). If a request
conforms to the rules set by the data subject, the agent responds with the
required decryption key.

Pr
e-
pr
in
t

8 Dimitris Mitropoulos et al.

3.1 Escrow Agents

Escrow agents are responsible for managing keys and provide the data subjects
with means to: a) set the authorization rules regarding the usage of their data,
and b) monitor if they are enforced.

3.1.1 Options

Data subjects can choose either an external escrow agent, or the default es-
crow agent that the data controller provides. In the former case, they should
register in advance on the escrow agent’s website. Then, the first time that
the data subjects provide personal data to the data controller, they should
also provide the domain name of the external escrow agent of their choice.
After that, they can login to the escrow agent’s website and set all the permis-
sions regarding their data, in a way we describe in Section 3.1.2. Until then,
the escrow agent will deny any access to their personal data. In our reference
scenario (Section 2.3), we assume that Alice has chosen an external escrow
agent, which means that she has gone through all the aforementioned steps.
Data subjects not interested to control and monitor their data are assigned an
escrow agent run by the data controller, which implements the organization’s
personal data security policy.

A data controller may have some obligatory rules concerning a data subject
(e.g. a bank offering a mortgage may require non-revocable access to the data
subject’s address). These rules are provided to the escrow agent the first time
that the data controller interacts with a data subject, are marked as such in
the escrow’s user interface, and cannot be changed thereafter.

3.1.2 Setting Authorization Rules

Data subjects can set their own authorization rules regarding the usage of their
personal data through the escrow agent they choose. They can also update
or revoke previously defined rules. An authorization rule, which can be set
through an escrow agent, involves the following elements.

1. Data Type defines the type of a specific piece of personal data, such as given
name, surname, address, credit card number. Data types are organized in a
hierarchy which is illustrated in Figure 2. This design choice offers the pos-
sibility of backward compatible additions. Also, it allows users to set one
guideline for multiple types of data via grouping. Notably, sensitive data
(e.g. data related to public health and social discrimination [8]) are distin-
guished as a different category because in many cases additional regulatory
restrictions apply to the processing of such data [8].

2. Data Use indicates how the application intends to use the corresponding
piece of data. Examples include: “send email to subject”, “interact with
the subject over the phone”, “use data for analytics”, “broadcast data”
and more. A user can allow multiple data uses for one data type.

3. Permission to Update and Data Provenance is defined by the data subject
to indicate whether and how a piece of data can be updated. If the per-
mission is granted, the data subject must identify the possible sources that

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 9

Data Type

SensitivePersonal Non-Personal

Identity

Surname

Country

Biometrical

Fingerprint

Iris Scan

Official Identification

Social Security Number

Passport Number

Medical History

Religious Beliefs

[…]

[…][…][…]

[…]

Fig. 2: Data Type Hierarchy.

may update the corresponding data; for example the data can be obtained
from a public registry.

4. Authenticated Parties include all data controllers that an external escrow
agent allows to process personal data.

Given the preceding concepts, data subjects can specify rules regarding the
actions (including data uses and updates) that can be performed by data con-
trollers, on their data types. In essence, pdguard is based on the Discretionary
Access Control (dac) model, which allows users to control access to their own
data [60, 9]. The access control matrix regarding the personal data of a specific
data subject can be abstracted in the following manner: If t is the set of data
types of this subject, c is the set of data controllers affiliated with this data
subject, and a is the set of all possible actions, every entry of the matrix is
a set of actions of the form a(t, c), where t ∈ t, c ∈ c, and a(t, c) ⊆ a. Note
that, if a data subject does not set a rule for a data type, then it is treated as
non-accessible.

Furthermore, data subjects can provide a time interval for every guideline.
This feature, determines the validity period of either an allowable data use or
update from a specific source. For instance, a data subject can specify that
data controller applications may “send email to subject” for one year.

In our reference scenario (see Section 2.3), Alice should set the following
rules: (1) allow the website to send her emails, (2) access her credit card with
a time interval of two years, and (3) allow her name to be displayed on the
forum’s pages. Also, she should allow the profile service to update her address.
By not setting any rules for the rest of the data she implies that none of the
website’s other applications can process them in any way.

3.1.3 Monitoring Service

Escrow agents provide a service that can be used by data subjects who wish to
monitor all the actions related to their personal data. A data subject can view
the applications that requested to use their data (and the corresponding data

Pr
e-
pr
in
t

10 Dimitris Mitropoulos et al.

controller), the date and the time of the request, the data type, the intended
data use, and the interaction purpose. An interaction purpose is another fea-
ture that is currently supported by our framework for logging purposes. In case
of an update, or in the case where data were provided by another entity (e.g.
the data were obtained from a public registry), the data subject can review
the sources that performed these actions. Finally, data subjects can also check
if the agent granted the authorization or not.

Through this monitoring service, data subjects can recognize a potential
misuse of their data. Consider the case, where Alice sees that the news website
where she is registered, has requested the decryption of her street address 500
times within one day. This would imply that the application is trying to use
this piece of data in an inappropriate manner.

3.1.4 Key Management

Escrow agents maintain key servers where the cryptographic keys are stored
encrypted just like the personal data in the data controller. The master key
used to decrypt the keys is also stored on the escrow agent’s side in a secure
location.

An escrow agent assigns a different secret key (k) to every (ds, dc) pair,
where ds is a data subject and dc is the data controller that maintains and
processes the personal data of ds. For example, one key is generated and used
when the news and media website processes the personal data of Alice, while a
different key will be employed when Alice signs up with a government agency
or e-shop.

k is not the key used to encrypt or decrypt personal data. Instead, to
reduce the attack surface of the data processing system even more, we use a
hash function with k and the data type (e.g. surname) of the requested piece of
data (pod) as arguments. The function yields k’, which is the key that will be
used for either the encryption or the decryption of this pod. Thus, a different
key is used for every data type of a specified data subject. This feature is
fundamental in terms of security, as we explain in the “Security Analysis”
Section (5.4).

3.2 The PDGuard API

There are two basic api calls that a data controller (dc) application should
invoke to process the personal data of a specific data subject (ds), namely:
decryptData and encryptData. Both, are members of the DataProtection

class, which is used to associate an escrow agent with a number of authen-
ticated entities that include the data subject, the data controller, the data
controller application, and more. In this way, the DataProtection class pro-
vides the necessary background for each call.

To access an opaque encrypted object (oeo) developers should invoke the
decryptData method after the database action used to retrieve the oeo, with
the following arguments: the oeo, the object’s data type, the intended data

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 11

Escrow Agent

H

Key
Storage

Authorization
Service

Monitoring
Service

Data
K

{K}Km

K’

Data_Type

Data Controller Request

Fig. 3: Key Management on the Escrow Agent. When there is a rule that
allows a requested data use or update, the authorization service retrieves the
key (also encrypted by a master key — {k}km) that corresponds to the (ds,
dc) pair from the key storage. It decrypts it and feeds it to a hash function
(h) together with the type of the requested data. The result is the key (k’)
that will be used for either the encryption or the decryption of this piece of
data. Notably, k never reaches the data controller.

use, and the interaction purpose. In case of a successful authorization, the
escrow agent returns the required key (k’), and the application uses it accord-
ingly.

In the case where the application needs to store or update a pod, the
encryptData call should be invoked right before the database action (e.g.
insert, update). In this case developers need to provide the object’s data type
the pod to encrypt, a boolean value that indicates if the action is an update
or not, and the provenance of this pod. If k’ is retrieved successfully, the api
encrypts the pod with k’ and the encrypted value {pod}k’ is used in e.g. a
database’s data manipulation statement.

For every invocation, the api uses all the provided arguments to form an
authorization bundle. This bundle is then transferred to the escrow agent in a
way that we describe in the following subsection. Depending on the request,
the agent will use the various elements of the bundle to check if the request
conforms with the rules set by the data subject. Specifically, in case of a decrypt
operation, the escrow agent will check if the specific data use is allowed for
this data type. If an encryptData call takes place, the escrow agent will check
whether this data type can be updated from this source or not. In both calls,
the agent must also check if the rule is valid for the time being. Note that,
if there is no corresponding data type, this implies that this is the first time
where data of this kind are about to be stored on the controller’s side. In this
case, the data type and provenance are recorded, but the agent will not allow
any access to this object until the data subject explicitly sets rules for it.

Pr
e-
pr
in
t

12 Dimitris Mitropoulos et al.

Escrow Agent PDGuard API

 1. [Client ID]

 2. Req Token

 3. [Client ID, Req Token,
Authorization Bundle]

Authentication and
signature verification

 Verifies signature and
checks if the request

conforms to the
corresponding rule

 4. Decryption Key

Fig. 4: Authorization Protocol Flow.

3.3 Authorization

To acquire the key needed for the processing of personal data, applications
must invoke the pdguard api. Then, the api takes over and communicates
with the escrow agent over a secure channel (tls), on behalf of the application.
Every token and resource request must be signed by the party that performs
the request using the secret obtained during a registration stage. The protocol
flow is illustrated in Figure 4. All lines, represent direct server-to-server api
calls that cannot be tampered with by a third party, and the parameters inside
square brackets are signed using shared secrets (in the future these will use a
public key infrastructure.)

The first time that a data controller application requests to process per-
sonal data referring to a specific data subject, it obtains from the escrow agent
a client id, and a secret. A client id is a unique identifier for every triplet that
includes: the data subject, the data controller, and the data controller appli-
cation. The client id and the secret form the client credentials which in turn,
will be used for all future communications regarding this data subject.

Consider the case where the news and media website mentioned in our sce-
nario (Section 2.3), attempts to access Alice’s email. To do so, the application
will use the decryptData call. When the call is invoked, the api obtains a
request token from the escrow agent on behalf of the application (Steps 1 and
2). The token is signed and it is sent back to the escrow agent together with
the authorization bundle (Step 3). At this point, the escrow agent’s checks
the bundle against the predefined rules provided to the escrow agent by Al-
ice (see Section 3.1.2). If the request conforms to the corresponding rule, the
agent sends the key back to the api (Step 4). Recall that, Alice has allowed
the website to access her email, therefore the authorization is successful. A
request token can be used for one or several key exchanges according to the
implementation (e.g. a token can be valid for a specific time interval).

Note that even though our token-based protocol shares a number of features
with oauth [3, 17] , it is different from other access management protocols such
as User-Managed Access (uma) [7] and Openid Connect (oidc) [4] – which
is built on top of oauth. For instance, both protocols are designed to interact
with end users (recall that our protocol involves only the pdguard api and the
escrow agent). Furthermore, uma does not provide means to define different
access policies.

Pre-print

T
itle

S
u

p
p

ressed
D

u
e

to
E

x
cessiv

e
L

en
g
th

1
3

integer

varchar (255)

varchar (255)

 AUTHORIZED_HOST_ID

 ID

 AUTHORIZED_APPLICATION_ΝΑΜΕ

 AUTHORIZED_APPLICATION

varchar (255)

varchar (255)

 ID

 DATA_CONTROLLER_NAME

 DATA_CONTROLLER

 DATA_SUBJECT_PASSWORD varchar (255)

varchar (255)

varchar (255)

varchar (255)

 DATA_SUBJECT_EMAIL

 ID

 DATA_SUBJECT_ΝΑΜΕ

 DATA_SUBJECT

varchar (255)

varchar (255)

 AUTHORIZED_APPLICATION_ΝΑΜΕ

 DATA_CONTROLLER_ID

 AUTHORIZED_APPLICATION_DATA_CONT

varchar (255) DATA_SUBJECT_ID

varchar (255) DATA_CONTROLLER_ID

 VALID_TO timestamp

timestamp

integer

binary (255)

 VALID_FROM

 ID

 KEY_CONTENT

 KEY

varchar (255) DATA_SUBJECT_ID

varchar (255) DATA_CONTROLLER_ID

boolean

integer

integer

 UPDATE_FIELD

 ID

 DATA_TYPE

 AUTHORIZATION_RULE

 AUTHORIZATION_RULE_ID integer

 VALID_TO timestamp

 VALID_FROM timestamp

integer

integer

 ID

 DATA_PROVENANCE

 ALLOWABLE_PROVENANCE

integer AUTHORIZATION_RULE_ID

 VALID_TO timestamp

timestamp

integer

integer

 VALID_FROM

 ID

 DATA_USE

 ALLOWABLE_USE

varchar (255) AUTH_APP_ID

varchar (255) DATA_CONTROLLER_ID

varchar (255)

varchar (255)

binary (255)

 DATA_SUBJECT_ID

 ID

 SECRET

 CLIENT

varchar (255) CLIENT_ID

timestamp VALID_TO

timestamp VALID_FROM

varchar (255)

binary (255)

 ID

 SECRET

 REQUEST_TOKEN

 CLIENT_ID varchar (255)

varchar (255)

bigint

 ID

 TIMESTAMP

 NONCE

 CLIENT_ID varchar (255)

boolean UPDATE_FIELD

integer DATA_PROVENANCE

integer DATA_USE

integer DATA_TYPE

timestamp REQUEST_DATE

 INTERACTION_PURPOSE integer

integer

integer

integer

 REQUEST_TYPE

 ID

 RESULT

 AUTHORIZATION_LOG

AUTHORIZED_APPLICATION_ID:ID

CLIENT_ID:ID

AUTH_APP_ID:ID

DATA_SUBJECT_ID:ID

AUTHORIZATION_RULE_ID:ID

DATA_CONTROLLER_ID:ID

DATA_SUBJECT_ID:ID

DATA_CONTROLLER_ID:ID

CLIENT_ID:ID

Fig. 5: Escrow Agent Database Schema. Foreign keys are shown with a (blue) key icon.

Pr
e-
pr
in
t

14 Dimitris Mitropoulos et al.

Algorithm 1 Exploring a Method

1: function explore(m, M , W , V , R)
2: S ← m.getStatements();
3: for all s ∈ S do
4: if s.hasMethodInvocation() then
5: m′ ← s.getMethod();
6: A← m′.getArguments();
7: V ′ ← A ∩ V ;
8: if m′ ∈M then
9: explore(m’, M , W , V ′, R);

10: remove(M,m′);
11: else if m′ /∈W and V ′ 6= ∅ then
12: verifyUse(V ′);
13: end if
14: end if
15: if s is AssignmentStatement then
16: trackPDGuardV ar(s, V,R);
17: else if s is ReturnStatement then
18: checkReturnedData(m, s, V,R);
19: end if
20: end for
21: end function

3.4 Static Verification of the API Usage

We have developed a verification approach to detect accidental misuse of per-
sonal data in data controller applications using the framework. As a misuse
you can consider the following: a developer intends to use a decrypted email
value as an argument to a network-related method that sends an email to a
data subject. However, the value ends up also as an argument to a method
that writes it to an external file used for analytical processing. To detect cases
like the above, our approach employs code annotations, taint tracking [12, 55],
and inter– and intra-procedural analysis. Both developers and external audi-
tors can use the approach to check that applications to not accidentally violate
pdguard use guidelines.

Our verification approach expects that when developers use a method that
outputs a decrypted value to an external channel (e.g. a file, the network etc.),
an annotation will exist be placed before the corresponding code statement.
This annotation will contain the intended data use of the value. This data
use must be the same as the one stated in the decryptData invocation where
the value was obtained. If an annotation is missing, or the data use is not the
initially declared one, the verifier issues a warning.

The verifier takes two sets as arguments: a set containing all the methods
of the application (M), and a set with methods that, by design will not ex-
port data (W) e.g. length, hashCode, and can handle them directly. Then it
processes each method m by passing it as an argument to a function we call
explore. explore examines all the statements of a method as described in
Algorithm 1. Notice that the function has also two empty sets as arguments:
V and R. As explore progresses, both sets are populated. In R all the appli-

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 15

cation methods that return variables with decrypted personal data are added
(with accompanying data use information). V is populated with all the vari-
ables of m, that are derived from a decryptData call (i.e. contain personal
data) either explicitly or implicitly. Note that for every variable in V , we also
keep the corresponding data use. This is done by trackPDGuardVar (Algo-
rithm 1, line 16) which is called if the statement s is an assignment. Then,
trackPDGuardVar inspects if a decryptData call or any method r ∈ R is in-
voked in the right hand side (rhs) of the statement. In this case, it updates
set V by adding the variable found in the left hand side (lhs). In any other
case, trackPDGuardVar gathers all the variables coming from the statement’s
rhs and checks if any of them exist in V . If they do, again, it adds the variable
found in the lhs into V . In this way we also perform taint propagation, e.g.
String foo = "I want this " + email;, where the variable email holds
the decrypted email of a data subject (note that here foo inherits the data
use of email).

A statement may involve a method invocation. In this case, explore iden-
tifies the name of the method (m′) and gets every variable v ∈ V passed as an
argument to this method (Algorithm 1, line 7). If m′ is an application method,
then it must also be explored. Note that V will not be an argument of ex-
plore, because the scope of m′ is different. However, all tracked variables
that were passed as arguments to m′, are propagated by passing set V ′ into
explore (Algorithm 1, line 9). Then, m′ is removed from M as we do not
need to explore it again.

If m′ is neither an application method nor included in W , then explore
checks the annotation preceding the statement (Algorithm 1, line 12). The
data use contained in the annotation should match with the usage of the vari-
ables found in V ′. In case of a mismatch (or a missing annotation), a warning
is issued. Finally, s can be a return statement. If it is, checkReturnedData
examines if m returns a variable that exists in V and, if this is the case, it
adds m to R.

4 Reference Implementation and Use

To demonstrate the feasibility of the approach and to bootstrap its adoption,
we have implemented the basic components of pdguard, namely an escrow
agent prototype, a library implementing the pdguard api library, the protocol
that allows the two to interact, and a verifier prototype. All components were
developed in the Java programming language.

4.1 Escrow Agent Prototype

The pdguard escrow agent prototype provides an easy to use web interface
for the data subjects to sign up, define or edit rules, and view authorization
logs. Data subjects can set one rule for multiple types of data via grouping;
for example restrict the handling of all medical data. This is feasible, because

Pr
e-
pr
in
t

16 Dimitris Mitropoulos et al.

data types are organized in a hierarchy, which in turn is implemented via
subsumption. We further describe this interface in our Appendix A.

Figure 5 illustrates the database schema used by the pdguard proto-
type. Keys are stored in the KEY table and their generation is based on the
Advanced Encryption Standard (aes) [30]. Observe that a key corresponds
to a data controller / data subject couple, and an authorization rule for
one data type may involve zero or multiple allowable uses and provenances.
Thus, if an application requests to update a specific data type (found on the
AUTHORIZATION RULE table), the agent will check if there is a corresponding
record on the ALLOWABLE PROVENANCE table. On the other hand, if the ap-
plication invokes a decryptData call, the agent will look for a tuple in the
ALLOWABLE USE table. Recall that, the keys found in the KEY table are not
used either for the encryption or the decryption of a pod. Instead, they are
used as arguments in a hash function (sha-256 in our implementation) to-
gether with the data type of the requested pod (see Subsection 3.1.4). Finally,
request tokens (REQUEST TOKEN) and nonces (NONCE) are associated with the
client credentials (CLIENT), and are used as described in Section 4.3.

4.2 Application-Side API Implementation

Using the pdguard library is straightforward. As described in Subsection 3.2,
decryptData and encryptData are methods of the DataProtection class. To
initialize a corresponding object, the developer must pass the domain name of
the escrow agent and the client credentials as arguments to the constructor of
the class. In turn, the client credentials can be initialized via a class named
RegistrationService.

Consider the case where Alice provides her surname to the news and media
website when she signs up for the first time (recall our reference scenario in
Section 2.3). The code running on the background should first initialize a
DataProtection object (e.g. dp) and then invoke the encryptData method
in the following manner (assume that surname is a string variable which has
Alice’s surname as its value):

dp.encryptData(surname, DataType.SURNAME, DataProvenance.DATA_SUBJECT_EXPLICIT,

false));

Listing 1: encryptData invocation example.

Observe that, the data provenance (DATA SUBJECT EXPLICIT) indicates that
this piece of data comes from the data subject itself. The final argument in-
forms the escrow agent that this action is not an update.

Now assume that the website needs to send a weekly digest via email to
Alice, per her request. To do so, it needs to retrieve her email, which is stored
in the database as an oeo. In this case, the decryptData method should be
invoked in the following manner:

String email = new String(dp.decryptData(OEO, DataType.PERSONAL_EMAIL, DataUse.

COMPOSE_EMAIL_TO_SUBJECT, InteractionPurpose.INFORMATIVE));

Listing 2: decryptData invocation example.

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 17

1 [Token Request to eagent.org]

2 POST /token HTTP/1.1

3 Host: www.eagent.org

4 client_id=edb924a9-25d5-4e65&nonce=bf1e1a5c-1179-4e73-b9d8×tamp=

1447629467784&signature=%2BuWVpmw%2B3kyv4IDrsxk1Jih5qFk%3D

5 [Response from eagent.org]

6 HTTP/1.1 200 OK

7 request_token=5e9e0dee-a932&token_secret=80

ebd92bb60d2912026726687247e6c994ccf308762ada

8 [Authorization Request to eagent.org]

9 POST /token HTTP/1.1

10 Host: www.eagent.org

11 client_id=edb924a9-25d5-4e65&data_type=PERSONAL_EMAIL&data_use=

COMPOSE_EMAIL_TO_SUBJECT&interaction_purpose=INFORMATIVE&nonce=3

c105f42-462c-4500&request_token=5e9e0dee-a932&request_type=DECRYPTION&

timestamp=1447629467817&signature=fVtl%2BORTjjgrFRQMx4ep5nVwlNA%3D

12 [Redirection]

13 HTTP/1.1 303 See other

14 Location: www.eagent.org/decrypt?client_id=edb924a9-25d5-4e65&data_type

=PERSONAL_EMAIL&data_use=COMPOSE_EMAIL_TO_SUBJECT&interaction_purpose

=INFORMATIVE

15 [Response from eagent.org]

16 HTTP/1.1 200 OK

17 decryption_key=3b37d8873cebeec2cde42e49d4260fdf

Fig. 6: Example use of the authorization protocol. The requests are
performed by the api on the background, after the decryptData call shown
in Listing 2.

4.3 Protocol Implementation

Figure 6, presents a sequence that involves: a) the requests performed by
the api, b) escrow agent responses, and c) a redirection to the escrow agent
service that checks the authorization bundle. The hmac [35] signature method
is currently used for the verification of each signature.

The application includes in every request the parameter client id: a
unique identifier that corresponds to the data subject, data controller, data
controller application tripplet (see Section 3.3). Recall that, this triplet is sent
to the escrow agent when the application first attempts to process a data sub-
ject’s personal data. During this interaction, the escrow agent will send back
this string together with the secret to be used for every future interaction
concerning the specified data subject. Other parameters that can be found in
each request include a timestamp and a nonce.

The authorization request seen in line 11 of Figure 6, is actually the request
performed after the decryptData invocation discussed in Subsection 4.2. In
line 14 we can see a redirection to the authorization service that our current
implementation uses to check the bundle. The service retrieves it and checks
the rules set by the subject. In this case, the authorization is granted.

Pr
e-
pr
in
t

18 Dimitris Mitropoulos et al.

4.4 Static Verifier Implementation

We have developed a prototype of the verification approach described in Sub-
section 3.4. Given a Java application that employs pdguard, we can process
it by using a well-established Java parser [56], and check for accidental misuse
of personal data.

For our current implementation, developers have to annotate code state-
ments that invoke methods channeling decrypted data outside the scope of the
application (recall section 3.4). Typical examples include (1) setter methods
(e.g. setString), the execute method along with its variations (coming from
either the java.sql.PreparedStatement class or the java.sql.Statement

class), (2) write and its variations (e.g. writeBytes) derived from classes
of the java.io package, and (3) any method that comes from a third party
package.

Annotations are expressed as JavaDoc comments before each method in-
vocation. For example, if the developer intends to write the decrypted value
contained in the email variable to a file, to send an email to data subject
(out.write(email);) the following annotation should precede the statement:
// @pdguse(email, COMPOSE EMAIL TO SUBJECT).

Our whitelist (i.e. set W) consists of methods that do not expose data
outside the application’s scope such as toString, length, equals, valueOf,
getBytes and more. Note that users can add more methods to W via config-
uration files.

5 Evaluation

To demonstrate the applicability of our framework we have built a pdguard-
based application, and also integrated it with a popular web application. In
addition, we have performed simple experiments to (1) measure the compu-
tational overhead that is introduced by a pdguard api call, and (2) check
the effectiveness of our verification mechanism. Finally, we have evaluated the
security of pdguard and its behavior in the presence of a potential attacker.

5.1 PDGuard Applications

Here we describe an e-shop application that utilizes the features pdguard,
and discuss how we introduced pdguard to The Guardian newspaper’s web-

Table 1: Java or Scala code and HTML markup lines (SLoC) of two
applications before and after their integration with PDGuard.

Application
Original w/ PDGuard Percentage

Code HTML Total Code HTML Total Increase
Custom E-shop 1173 624 1797 1382 635 2017 12.2%
Guardian’s “Identity” 3949 1966 5915 4225 1979 6204 4.8%

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 19

1 encryptedData = getDataToDecrypt(fields);
2 decryptedData = Map();
3 for fieldName, encryptedValue in encryptedData {
4 decryptedData.add(fieldName, dp.decryptData(encryptedValue, fields.get(

fieldName), DataUse.REPORT, InteractionPurpose.INFORMATIVE));
5 }
6 updateUserObject(decryptedData);

Fig. 7: Pseudo-code for changes to the “Identity” application to de-
crypt personal data. fields is a map with the private fields of a user object
as keys (the user class is defined and used internally by the application), and
the corresponding pdguard data types as values. getDataToDecrypt creates
a map with the private fields as keys and the corresponding ciphertexts as
values.

site identity application.1 Table 1 presents the Source Lines of Code (sloc)
of the two applications before and after introducing pdguard. In both cases,
seven pieces of personal data were stored encrypted including names, sur-
names, addresses, and credit cards. The results indicate that little developer
effort is required to protect a wide range of confidential data.

5.1.1 Building a PDGuard-based E-Shop

The e-shop application implements two basic functionalities: customer regis-
tration / authentication and order processing. In both cases, the application
processes personal data.

Our e-shop was written in Java and employs the object-relational mapping
(orm) programming technique which creates a virtual object database that
can be used from within the application. The application’s database model in-
volves two classes that have personal data as variables, namely: the Customer

class (email, name, surname) and the Order class (city, country, street ad-
dress, credit card number). Calls to encryptData and the subsequent data
encryption are performed either when a new customer registers or when an
order is processed. Intuitively, the reader can infer that the data provenance
of the data in these cases is set to DATA SUBJECT EXPLICIT, which means that
they are provided by the data subject itself. For every authenticated customer,
the e-shop has a predefined rule that allows it to access the customer’s e-mail
for informative purposes (InteractionPurpose.INFORMATIVE). To do so, the
application performs a decryptData call after a successful login.

5.1.2 The Guardian’s Identity Application

The news and media website theguardian. com is owned by the Guardian
Media Group [5]. It is developed in the Scala programming language and all
its source code is available through a GitHub repository [6]. From the various
sub-projects it contains, we chose to port the “Identity”2 application. This

1 https://profile.theguardian.com/signin
2 https://github.com/guardian/frontend/tree/master/identity

theguardian.com
https://profile.theguardian.com/signin
https://github.com/guardian/frontend/tree/master/identity

Pr
e-
pr
in
t

20 Dimitris Mitropoulos et al.

application is directly related to personal user data because it handles the
Guardian profile functionality. In particular, through “Identity”, users can
create an account to personalize their experience (e.g. leave comments, enter
competitions and subscribe to email services). To do so, they must provide
several pieces of personal data, such as emails, home addresses, and birth
dates.

We successfully incorporated pdguard to the “Identity” application by
adding 289 lines of code (loc) to the 5915 existing ones. One modification
was made to change the sign up webpage, to let users provide the domain
name of an escrow agent (13 html loc). The rest, involved the encryption
and decryption of the various personal data obtained from the user. For in-
stance, when users sign up, they fill in a form with all their data. Then a class
named RegistrationController3 retrieves the data and initializes a user

object, which in turn, is passed to a class named IdAPI.4 Finally, IdAPI in-
teracts with the Guardian’s back-end and stores all the provided information.
We introduced a number of encryptData calls in this class right before the
database interaction (the data provenance is set to DATA SUBJECT EXPLICIT

here too).

Consider the case where the application attempts to access personal data
and display them as part of a webpage (as is done in the EditProfileController5

class). After the application retrieves the data from the database, our glue code
gathers them and decrypts them. as shown in Figure 7. Now, assume that a
data subject chose to set her surname as inaccessible by the website. As a
result, her surname will not appear on the corresponding webpage as seen in
Figure 8.

5.2 Performance

To measure the overhead added by pdguard api calls, we instrumented the
“Identity” application with high precision time counters. All measurements
were run on a client with a quad core processor with 8gb of ram, running
Ubuntu Linux. The escrow agent was running on a remote server with a dual
core processor with 2gb of ram, running Debian Linux.

In our experiments, we measured how much time the application spends
to either access or update a piece of data, with and without pdguard. To
get reliable measurements, we issued 300 consecutive api invocations for each
case (i.e., access and update requests). On average, it took the application
451 ms to access, and 655 ms to update a piece of data without pdguard.
Figure 9, illustrates how much time the application spends to either access or
update a piece of data, with and without pdguard. When pdguard is used,
the corresponding average time to either access or update the same piece of
data is 618 and 828 ms respectively. As it seems, the overhead is noticeable

3 app/controllers/RegistrationController.scala
4 app/idapiclient/IdApi.scala
5 app/controllers/EditProfileController.scala

app/idapiclient/IdApi.scala
app/controllers/EditProfileController.scala

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 21

Fig. 8: Screenshot from the ported “Identity” application. We observe
that Alice does not permit access to her surname.

in both cases: 25% for data access (encryptData), and 37% for data update
(decryptData).

By profiling the client application to examine the reasons behind this over-
head, we found that most time is spent to functions that involve the checking
of the authorization bundle by the escrow agent. Also, network latency (recall
that the escrow agent was running on a remote machine), which was approxi-
mately 40 ms for both api calls, is included in the overhead. Although under
some circumstances this latency can be a usability issue, it does not affect the
framework’s scalability. Notably, if we exclude this latency from the measure-
ment, the computational overhead of the framework is significantly reduced
(28% and 20% for a decryptData and an encryptData api call respectively).

We need to mention here that, we did not attempt to optimize the frame-
work’s code. By providing extra features like caching, the overhead could be
significantly reduced. For example, the api could allow the data to be cached
by a trusted application for one week. In this way, we could avoid sending a
request to the escrow agent, for every action involving personal data.

5.3 Verification

We modified our e-shop application to make it write a decrypted value to a file
in different ways and with different annotations (7 in total). Our modifications
also involved wrapper methods and implicit assignments. We then used our
static code verifier to detect the misuses. The verifier correctly identified the

Pr
e-
pr
in
t

22 Dimitris Mitropoulos et al.

Fig. 9: The time (in milliseconds) needed to either access
(decryptData) or update (encryptData) data, with and without our
framework. The overhead introduced by each call can be seen below, right
next to each action. Note that there is a network latency included in the grey
charts (∼40 ms), because of the interaction with the escrow agent (which was
running on a remote machine).

cases without any false positives or negatives. However, more extensive testing
is required to validate the efficacy of taint propagation.

Consider the following code fragment, where the developer invokes a func-
tion that wraps a decryptData call (getCustomerEmail) and attempts to
write the decrypted value to a file in two occasions (lines 4 and 7):

1 BufferedWriter out = new BufferedWriter(new FileWriter("file.txt"));

2 String email = getCustomerEmail();

3 // @pdguse(email, COMPOSE_EMAIL_TO_SUBJECT)

4 out.write(email);

5 String bar = email + "bar";

6 // @pdguse(bar, SEND_SMS_TO_SUBJECT)

7 out.write(bar);

Given that in the initial decryptData call, the data use was indicated as
COMPOSE EMAIL TO SUBJECT, the statement in line 4 passes verification as le-
gitimate. On the other hand, the verifier raises a warning when it examines
line 6.

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 23

5.4 Security Analysis

We evaluate the security of pdguard, by assessing how the framework secures
against either external of internal adversaries attempting to access personal
data.

External attackers may perform attacks, such as sql injection [47] and
shell-code injection [62]. pdguard is not designed to protect against such at-
tacks and requires a secure application to work as intended. However, there
are cases where pdguard will prevent such attacks even if an application is
vulnerable.

Consider a web application that accepts and processes user input without
proper validation and / or filtering. If the application concatenates the input
with sql queries, then it is vulnerable to sql injection attacks. When an out-
sider performs such an attack to retrieve the personal data of multiple users
(e.g. addresses), the attack will only return useless encrypted data. Neverthe-
less, pdguard will not prevent an attack against the integrity of the database
(e.g. an attempt to drop a table).

If attackers gain control over the target server via a shell-code injection
attack, they may attempt to develop an application that utilizes the pdguard
api. To authorize this application’s exchange with the various escrow agents
in the way we presented in Section 3.3, a digital certificate is needed. This
certificate though, should not be necessarily collocated with the vulnerable
application: the application could initially retrieve it from a smart card. Still,
attackers could extract it from the process memory [34]. In addition, they
may try to retrieve cryptographic keys from an application’s memory dump
(this could be done by a tech-savvy employee too). In that case however, the
attacker will manage to access only one piece of data because the key is related
to a specific data type of a specific data subject (recall our design choice to
use a hash function—see Section 3.1.4).

More dangerous are native code injection attacks [32]. These allow the
attacker to issue an arbitrary number of pdguard calls and obtain the corre-
sponding data. In theory, such attacks can be thwarted by including checks,
that verify the application’s integrity [59] in our communication protocol –
see Subsection 3.3. This would however require substantial changes to the
protocol, and would interfere with instruction randomization techniques.

pdguard will prevent by design threats such as transferring data between
different computers and unauthorized access through application misuse. How-
ever, pdguard will not prevent either a malicious administrator who has access
to the server where the application is running, or a rogue developer who will
leverage the framework’s api for processing personal data (see Section 2.2).

A successful attack against an escrow agent will not lead to any unautho-
rized action because personal data are never stored there. Even if attackers
also manage to compromise a data controller, they will only obtain the subset
of data of users using the specific escrow agent. In the case where attack-
ers manage to make the escrow agent unavailable through a denial of service
(dos) attack, all personal data become automatically unavailable until the cor-

Pr
e-
pr
in
t

24 Dimitris Mitropoulos et al.

responding server is reachable again (the api will not be able to retrieve any
keys from the escrow agent).

Two additional threats to privacy are associated with meta data and ag-
gregate data. First, a privacy breach could occur when an attack targets the
meta data stored on the escrow agent’s side (e.g. check what kind of data
users provide to which sites or when such data is accessed). This can be ad-
dressed by encrypting the meta data too. Specifically, a user’s auditing data
can be encrypted by a key that only the corresponding user holds. Similarly,
access permission data can be encrypted by keys that data controllers provide.
Extending pdguard to support this functionality is relatively straightforward.
Second, leaked aggregate data held by data controllers (e.g. “30-year-olds fa-
vor product x”), can lead to the disclosure of personal data if it is used as
a stepping stone to mount database inference [15] or machine learning at-
tacks [24, 54]. However, if data subjects do not consent for the data controller
to use their data as a basis to derive aggregate data or train machine learning
models, then such threats are avoided.

6 Challenges

In this section, we discuss a number of challenges that emerge in the context
of pdguard and describe how they can be addressed.

Aiding Intrusion Detection pdguard can help detect and prevent attacks
that target personal data. Specifically, the logging service provided by the
framework can be utilized by intrusion detection systems (ids) [19, 39]. For
instance, consider a case where an application retrieves credit card data at
an unprecedented rate. Such an event could indicate a malicious act, thus a
service running on the side of the escrow agent could temporarily deny all
requests coming from this application.

Search over Encrypted Data Currently, pdguard does not allow database-
layer searches over encrypted data, e.g. obtaining a list of all patients that
have been admitted for a particular symptom. As we mentioned earlier, our
e-shop application employs the orm programming technique and the Identity
application uses a nosql backend. Consequently, each application performed
actions directly on the fields of objects, without issuing sql queries with argu-
ments containing personal data. To handle this shortcoming, pdguard could
be extended to use schemes such as Cryptdb [45], an approach that supports
the execution of queries over encrypted data through efficient sql-aware en-
cryption.

PDGuard API Extention for Bulk Encryption / Decryption The cur-
rent version of the pdguard api does not support bulk encryption or decryp-
tion of records. Consider the case where a data controller wants to tally the
number of its customers by their postal code. In this case the decryptData

call must be invoked several times adding significant overhead. Extending the
api to include an array of authorization bundles as a request’s argument, could
solve this problem and make the framework more efficient.

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 25

7 Related Work

Diverse approaches have been developed to prevent unauthorized personal data
processing; many with different goals and threat models than pdguard. We
describe how each one operates, outline its main characteristics, and compare
it to pdguard.

An early case where cryptography and an escrow service were used to
protect data was Ephemerizer [44, 41]. In the context of the Ephemerizer,
all user data are stored encrypted and the keys are managed centrally by a
trusted third party. This entity destroys the cryptographic key after a speci-
fied timeout, thus making the data unavailable. Contrary to the Ephemerizer,
Vanish [25] follows a decentralized approach to protect the privacy of past,
archived data by integrating cryptographic techniques with global-scale, p2p,
distributed hash tables (dhts). dhts implement an index-value database on a
collection of p2p nodes. Vanish encrypts personal data locally with a random
encryption key not known to the user. Then, after a user-specified time, it
destroys the local copy of the key and sprinkles its bits across random indexes
in the dht. The main goal of these approaches is to make personal data, such
as emails and social media messages, (typically data that exist on a personal
computer) unavailable after a specific period of time. pdguard operates in a
broader context and involves personal data that are stored by the various data
controllers. Through pdguard, data subjects can render their data unacces-
sible after a certain period of time by associating specific time intervals with
classes of data.

mylar [46] is a platform for developing web applications, which protects
sensitive data against attackers with full access to servers, thus dealing with
more threats than pdguard. To do so, it stores personal data encrypted on the
server, and decrypts them only in users’ browsers. In addition, it allows the
server to perform searches over encrypted documents. Contrary to pdguard,
mylar does not provide a way for data subjects to control and audit the use
of their personal data. Also, the fact that data decryption is performed on the
client-side, interferes with the running of back-office operations and makes the
framework susceptible to xss attacks.

Cloudfence [43] is a framework tailored to cloud hosting environments that
provides data tracking capabilities to both service providers, as well as their
users. To track the flow of the data within a cloud infrastructure, Cloudfence
employs byte-level data tagging. To enable this functionality, application devel-
opers must use specific api calls. In addition, it generates detailed audit trails
for tagged data via a logging service. Silverline [40] is a system close to Cloud-
fence. However, the process-level tainting it supports is rather coarse-grained
for the most common web applications. In both cases, data subjects cannot
control the use of their personal data. Furthermore, even if both frameworks
aid the prevention of external attacks, they will not protect against insider
threats. pdguard achieves the latter by storing personal data encrypted. Song
et al. [57] have also proposed a high level architecture for data protection in
the cloud. The architecture is based on trusted platform modules [14], but the

Pr
e-
pr
in
t

26 Dimitris Mitropoulos et al.

authors do not provide an implementation and evaluation. In addition, the
proposed solution does not provide a way for users to control and audit the
use of their data, leaving that to the developers.

The Adaptive Trust Negotiation and Access Control (atnac) framework [51]
aims to prevent the leakage of sensitive data during an electronic transaction.
It builds on two existing systems, TrustBuilder [64] and the Generic Autho-
rization and Access-control api (gaa-api) [48, 49, 50]. The former is a trust
negotiation system that regulates when and how sensitive information is dis-
closed to other parties, and the latter is a framework that allows dynamic
adaptation to network threat conditions communicated by an ids. pdguard
has a much broader scope than atnac and by design can prevent a potential
data leakage during a transaction over the web.

The “Personal Data Storage” (pds) approach [33] was inspired by the shift
of information systems’ center of gravity from organizations to individuals
(e.g. social networks). A pds stores data in one central point, with application-
specific services plugging into this core. Hence, the data subject is the central
point of control in this model. This differs from the service provider-centric
control currently in place in many web applications. Multiple pds can co-exist
into a third-party entity, similar to our escrow agent. The main problem in
this case is that if attackers manage to hijack this entity, they automatically
have access to the personal data of multiple data subjects. In the context of
pdguard though, hacking an escrow agent is useless without a compromised
data controller as we have pointed out in Subsection 5.4.

Yu et al. [65] have employed applied cryptography but for a slightly dif-
ferent purpose: to secure user files stored on cloud applications. Specifically,
they try to address overhead issues imposed by the distribution of decryp-
tion keys by combining different re-encryption schemes with Attribute-Based
Encryption (abe) [26]. abe is a type of public-key encryption in which the
key of a user and the ciphertext are dependent upon attributes (e.g. country,
gender). In this context, the decryption of a ciphertext is possible only if the
set of attributes of the user key matches the attributes of the ciphertext. In
pdguard key management differs in the following manner: data types are used
as attributes to generate symmetric keys for the encryption or decrytpion of
a specific piece of data. easier is also based on abe to support fine-grained
access control policies and dynamic group membership in the context of a
social media network (i.e. a user defines which data can be viewed by other
friends and groups that are registered in the social network). In this context
the threat model is different than pdguard’s. Our approach is more generic
but it can be applied to this context too.

8 Concluding Remarks

it security in general and the protection of personal data in particular are
tough problems to crack, for they involve diverse stakeholders with conflict-
ing interests, determined unknown opponents, and an unclear balance of risks
versus payoffs. As these problems involve a multitude of complex systems,
technology cannot offer a silver bullet, but it can help make them tractable.

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 27

Adopting a security by design approach, pdguard provides through a stan-
dardized, auditable mechanism an effective way for protecting personal data
by offering to data subjects direct control and monitoring, and by reducing
and strengthening the attack surface of data management systems maintained
by data controllers. To do so, pdguard combines different concepts including
applied cryptography, access control models, an api, authorization protocols,
and taint tracking. Our evaluation demonstrates that pdguard can indeed be
used in practice both in new and in legacy applications.

Can pdguard actually make a difference in our everyday lives? This goal
requires a lot more work ranging from scientific and technical to evangelism.
Important elements include: the design of performance optimizations at the
architectural level; the development of additional auditing tools and meth-
ods; the running of large scale trials; the operation of an escrow agent in a
production setting; the implementation of pdguard api libraries in more com-
monly used programming languages; the initial adoption by significant data
controllers; the establishment of a community and a governance structure;
as well as the education of developers, data controllers, and data subjects.
Achieving these objectives seems like a tall order, but this is the way in which
technology changes our lives.

Availability. The source code of our framework is available as open-source
software at https://github.com/AUEB-BALab/PDGuard.

Acknowledgments: We would like to thank Amit Levy, Panos Louridas,
Theofilos Petsios, and George Argyros for their insightful comments. This
work has received funding from the eu’s Horizon 2020 research and innovation
programme under grant agreement No 825328 and the Research Centre of the
Athens University of Economics andBusiness, under the Original Scientific
Publications framework 2019 (project er-3074-01).

References

1. ABC4Trust EU project: Official website. https://www.abc4trust.eu/

index.php. [Online; accessed 09-July-2019].
2. CREDENTIAL: Secure cloud identity wallet. https://credential.eu/.

[Online; accessed 09-July-2019].
3. OAuth: An open protocol to allow secure authorization in a simple and

standard method from web, mobile and desktop applications. http://

oauth.net/. [Online; accessed 09-July-2019].
4. OpenID connect main website. https://openid.net/connect/. [Online;

accessed 09-July-2019].
5. The Guardian Media Group. http://www.theguardian.com/gmg. [On-

line; accessed 30-September-2018].
6. The Guardian. The source code of the world’s leading liberal voice. https:

//github.com/guardian. [Online; accessed 30-September-2018].

https://github.com/AUEB-BALab/PDGuard
https://www.abc4trust.eu/index.php
https://www.abc4trust.eu/index.php
https://credential.eu/
http://oauth.net/
http://oauth.net/
https://openid.net/connect/
http://www.theguardian.com/gmg
https://github.com/guardian
https://github.com/guardian

Pr
e-
pr
in
t

28 Dimitris Mitropoulos et al.

7. User managed access: Created by kantara initiative staff. https:

//kantarainitiative.org/confluence/display/LC/User+Managed+

Access. [Online; accessed 05-July-2019].
8. The European Union General Data Protection Regulation (GDPR).

http://data.consilium.europa.eu/doc/document/ST-5419-2016-

INIT/en/pdf, 2016. [Online; accessed 30-September-2018].
9. Ross J. Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. John Wiley & Sons, Inc., New York, NY, USA, 1st
edition, 2001.

10. Paul Barford, Igor Canadi, Darja Krushevskaja, Qiang Ma, and
S. Muthukrishnan. Adscape: Harvesting and analyzing online display ads.
In Proceedings of the 23rd International Conference on World Wide Web,
pages 597–608, New York, NY, USA, 2014. ACM.

11. Sean Barnum and Michael Gegick. Design principles. https:

//buildsecurityin.us-cert.gov/articles/knowledge/principles/

design-principles, September 19, 2005.
12. Jonathan Bell and Gail Kaiser. Phosphor: Illuminating dynamic data flow

in commodity jvms. In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 83–101, New York, NY, USA, 2014. ACM.

13. Steven M. Bellovin. Thinking Security: Stopping Next Year’s Hackers.
Addison-Wesley, Boston, 2016.

14. Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez,
Reiner Sailer, and Leendert van Doorn. vtpm: Virtualizing the trusted
platform module. In Proceedings of the 15th Conference on USENIX Se-
curity Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006.
USENIX Association.

15. Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. Secure databases:
Constraints, inference channels, and monitoring disclosures. IEEE Trans-
actions on Knowledge and Data Engineering, 12, 12 2000.

16. Jan Camenisch, Anja Lehmann, Gregory Neven, and Alfredo Rial.
Privacy-preserving auditing for attribute-based credentials. In 19th Euro-
pean Symposium on Research in Computer Security - Volume 8713, ES-
ORICS 2014, pages 109–127, New York, NY, USA, 2014. Springer-Verlag
New York, Inc.

17. Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and
Patrick Tague. OAuth demystified for mobile application developers. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 892–903, New York, NY, USA, 2014. ACM.

18. Frederick B. Cohen. Defense-in-depth against computer viruses. Comput.
Secur., 11(6):563–579, October 1992.

19. Dorothy Elizabeth Robling Denning. An intrusion detection model. IEEE
Transactions on Software Engineering, 13(2):222–232, February 1987.

20. Peter J. Denning. Computers Under Attack: Intruders, Worms, and
Viruses. Addison-Wesley, 1990.

https://kantarainitiative.org/confluence/display/LC/User+Managed+Access
https://kantarainitiative.org/confluence/display/LC/User+Managed+Access
https://kantarainitiative.org/confluence/display/LC/User+Managed+Access
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
https://buildsecurityin.us-cert.gov/articles/knowledge/principles/design-principles
https://buildsecurityin.us-cert.gov/articles/knowledge/principles/design-principles
https://buildsecurityin.us-cert.gov/articles/knowledge/principles/design-principles

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 29

21. United States Department Of Veterans Affairs. Management of data
breaches involving sensitive personal information (SPI). http://www.va.
gov/vapubs/viewPublication.asp?Pub_ID=608, January 6, 2012.

22. David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher,
Daniel Slamanig, and Christoph Striecks. Revisiting proxy re-encryption:
Forward secrecy, improved security, and applications. Cryptology ePrint
Archive, Report 2018/321, 2018. https://eprint.iacr.org/2018/321.

23. Nishant Doshi. Facebook applications accidentally leaking access to third
parties. Technical report, Symantec Corporation, 2011. [Online; accessed
10-February-2017].

24. Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.
In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 1322–1333, New York, NY,
USA, 2015. ACM.

25. Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry M. Levy.
Vanish: Increasing data privacy with self-destructing data. In Proceedings
of the 18th Conference on USENIX Security Symposium, pages 299–316,
Berkeley, CA, USA, 2009. USENIX Association.

26. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Pro-
ceedings of the 13th ACM Conference on Computer and Communications
Security, CCS ’06, pages 89–98, New York, NY, USA, 2006. ACM.

27. Samuel Grogan and Aleecia M. McDonald. Access denied! contrasting
data access in the United States and Ireland. In Proceedings on Privacy
Enhancing Technologies, pages 191–211. De Gruyter, 2016.

28. Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wil-
son. Measuring price discrimination and steering on e-commerce web sites.
In Proceedings of the 2014 Internet Measurement Conference, pages 305–
318, New York, NY, USA, 2014. ACM.

29. Michael Howard and David LeBlanc. Writing Secure Code. Microsoft
Press, Redmond, WA, second edition, 2003.

30. International Organization for Standardization. Information technology
— Security techniques — Encryption algorithms — Part 3: Block ciphers.
ISO, Geneva, Switzerland, 2010. ISO/IEC 18033-3:2010.

31. Poul-Henning Kamp. Linkedin password leak: Salt their hide. Queue,
10(6):20:20–20:22, June 2012.

32. Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proceedings
of the 10th ACM Conference on Computer and Communications Security,
CCS ’03, pages 272–280, New York, NY, USA, 2003. ACM.

33. Tom Kirkham, Sandra Winfield, Serge Ravet, and Sampo Kellomaki. The
personal data store approach to personal data security. IEEE Security and
Privacy, 11(5):12–19, September 2013.

34. Tobias Klein. All your private keys are belong to us. http://trapkit.de/
research/sslkeyfinder/keyfinder_v1.0_20060205.pdf, Ferbruary 5,

http://www.va.gov/vapubs/viewPublication.asp?Pub_ID=608
http://www.va.gov/vapubs/viewPublication.asp?Pub_ID=608
https://eprint.iacr.org/2018/321
http://trapkit.de/research/sslkeyfinder/keyfinder_v1.0_20060205.pdf
http://trapkit.de/research/sslkeyfinder/keyfinder_v1.0_20060205.pdf

Pr
e-
pr
in
t

30 Dimitris Mitropoulos et al.

2006.
35. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for mes-

sage authentication. http://www.ietf.org/rfc/rfc2104.txt; accessed
09-November-2015, February 1997. RFC 2104 (Informational).

36. Mathias Lécuyer, Riley Spahn, Yannis Spiliopolous, Augustin Chaintreau,
Roxana Geambasu, and Daniel Hsu. Sunlight: Fine-grained targeting de-
tection at scale with statistical confidence. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015, pages 554–566, 2015.

37. Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay,
and Blase Ur. Measuring password guessability for an entire university. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 173–186, New York, NY, USA,
2013. ACM.

38. Gary McGraw. Software Security: Building Security In. Addison-Wesley
Professional, 2006.

39. Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer,
and Bryan D. Payne. Evaluating computer intrusion detection systems:
A survey of common practices. ACM Comput. Surv., 48(1):12:1–12:41,
September 2015.

40. Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. Silverline:
Data and network isolation for cloud services. In Proceedings of the 3rd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’11,
pages 13–13, Berkeley, CA, USA, 2011. USENIX Association.

41. Srijith Krishnan Nair, Muhammad Torabi Dashti, Bruno Crispo, and An-
drew S. Tanenbaum. A hybrid PKI-IBC based ephemerizer system. In
Proceedings of the IFIP TC-11 22nd International Information Security
Conference, 14-16 May 2007, Sandton, South Africa, pages 241–252, 2007.

42. Arvind Narayanan and Vitaly Shmatikov. Myths and fallacies of ”person-
ally identifiable information”. Commun. ACM, 53(6):24–26, June 2010.

43. Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou, Michalis Polychron-
akis, and Angelos D. Keromytis. Cloudfence: Data flow tracking as a
cloud service. In Research in Attacks, Intrusions, and Defenses - 16th
International Symposium, Rodney Bay, St. Lucia, October 23-25, 2013.
Proceedings, pages 411–431, 2013.

44. Radia Perlman and Radia Perlman. The Ephemerizer: Making data dis-
appear. Journal of Information System Security, 1:51–68, 2005.

45. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. CryptDB: Protecting confidentiality with encrypted query
processing. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles, pages 85–100, New York, NY, USA, 2011. ACM.

46. Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zel-
dovich, M. Frans Kaashoek, and Hari Balakrishnan. Building web appli-
cations on top of encrypted data using mylar. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation,

http://www.ietf.org/rfc/rfc2104.txt

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 31

pages 157–172, Berkeley, CA, USA, 2014. USENIX Association.
47. Donald Ray and Jay Ligatti. Defining code-injection attacks. In Proceed-

ings of the 39th annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 179–190, New York, NY, USA, 2012.
ACM.

48. T. Ryutov and C. Neuman. The specification and enforcement of advanced
security policies. In Proceedings of the 3rd International Workshop on
Policies for Distributed Systems and Networks, pages 128–, Washington,
DC, USA, 2002. IEEE Computer Society.

49. Tatyana Ryutov, Clifford Neuman, and Dongho Kim. Dynamic authoriza-
tion and intrusion response in distributed systems. In DARPA Informa-
tion Survivability Conference and Exposition, 2003. Proceedings, volume 1,
pages 50–61. IEEE, April 2003.

50. Tatyana Ryutov, Clifford Neuman, Dongho Kim, and Li Zhou. Integrated
access control and intrusion detection for web servers. In Proceedings of the
23rd International Conference on Distributed Computing Systems, pages
394–, Washington, DC, USA, 2003. IEEE Computer Society.

51. Tatyana Ryutov, Li Zhou, Clifford Neuman, Travis Leithead, and Kent E.
Seamons. Adaptive trust negotiation and access control. In Proceedings of
the Tenth ACM Symposium on Access Control Models and Technologies,
pages 139–146, New York, NY, USA, 2005. ACM.

52. Ahmad Sabouri and Kai Rannenberg. ABC4Trust: Protecting privacy in
identity management by bringing privacy-abcs into real-life. In Privacy
and Identity Management for the Future Internet in the Age of Globalisa-
tion - 9th IFIP WG 9.2, 9.5, 9.6/11.7, 11.4, 11.6/SIG 9.2.2 International
Summer School, Patras, Greece, September 7-12, 2014, Revised Selected
Papers, pages 3–16, 2014.

53. Bruce Schneier. Secrets & Lies: Digital Security in a Networked World.
Wiley, New York, 2000.

54. Reza Shokri, Marco Stronati, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18, 2017.

55. Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram
Krishnan, Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. Toward a
framework for detecting privacy policy violations in Android application
code. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 25–36, New York, NY, USA, 2016. ACM.

56. Nicholas Smith, Danny Van Bruggen, and Federico Tomassetti. Java-
Parser: Visited. Leanpub, 2017.

57. Dawn Song, Elaine Shi, Ian Fischer, and Umesh Shankar. Cloud data
protection for the masses. Computer, 45(1):39–45, January 2012.

58. Sarah Spiekermann. The challenges of privacy by design. Commun. ACM,
55(7):38–40, July 2012.

59. Diomidis Spinellis. Reflection as a mechanism for software integrity verifi-
cation. ACM Transactions on Information and System Security, 3(1):51–
62, February 2000.

Pr
e-
pr
in
t

32 Dimitris Mitropoulos et al.

60. Salvatore Stolfo, Steven M. Bellovin, Angelos D. Keromytis, Sara Sinclair,
Sean W. Smith, and Shlomo Hershkop. Insider Attack and Cyber Security:
Beyond the Hacker (Advances in Information Security). Springer-Verlag
TELOS, Santa Clara, CA, USA, 1 edition, 2008.

61. Martin R. Stytz. Considering defense in depth for software applications.
IEEE Security and Privacy, 2(1):72–75, January 2004.

62. Zhendong Su and Gary Wassermann. The essence of command injec-
tion attacks in web applications. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 372–382, New York, NY, USA, 2006. ACM.

63. John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley, Boston, MA, 2001.

64. Marianne Winslett, Adam Lee, Lars Olson, and Michael Rosulek. Trust-
Builder: negotiating trust in dynamic coalitions. In DARPA Informa-
tion Survivability Conference and Exposition, 2003. Proceedings, volume 2,
pages 49–51. IEEE, April 2003.

65. Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving se-
cure, scalable, and fine-grained data access control in cloud computing.
In Proceedings of the 29th Conference on Information Communications,
INFOCOM’10, pages 534–542, Piscataway, NJ, USA, 2010. IEEE Press.

A Appendix

In the following, we describe the user interface provided by our escrow agent
reference implementation. Through this interface, data subjects can set or edit
authorization rules, and monitor the actions performed on their data.

Data subjects can easily render their data inaccessible or set new allowable
actions. Figure 11, illustrates a pop up window that data subjects see when
they attempt to define such rules for a specific data controller (“The Guardian”
in this example). Notably, pdguard’s data type hierarchy allows data subjects
to set one rule for multiple types of data via grouping.

A data subject can view which data controllers perform actions on which
data types. For instance, in Figure 12, Alice observes that “The Guardian”
uses three different data types, namely: her given name, her surname, and
her address. By clicking on the magnifier image Alice can view all the related
uses or updates that the data controller may perform on her data and the
corresponding validity period. For example, in Figure 13 we see that “The
Guardian” can use Alice’s surname for analytics and reporting from February
26, 2017 to March 8 2019.

Data subjects can monitor all the actions that the various applications
perform on their personal data, through the authorization logs that the escrow
agent provides. Figure 10 illustrates all the actions that were performed on the
personal data of Alice, by The Guardian’s “frontend” application, for a specific
period of time. The logs also include the interaction purpose the date and the
time that the action took place. Finally, the data subject can check if the
action was permitted or not.

Pr
e-
pr
in
t

Title Suppressed Due to Excessive Length 33

Fig. 10: Authorization Logs. Alice monitors the different actions that “The
Guardian” performed on her personal data between 2017-02-01 and 2017-02-
28. Specifically, the “frontend” application sent five requests to the escrow
agent. One call concerned the update of Alice’s given name. This update came
from Alice herself. The other requests involved calls for different data types.
Note that, the escrow agent granted access only to her given name and sur-
name.

Fig. 11: Setting Rules. An example of the pop up window that data subjects
see when they attempt to define authorization rules for a specific data con-
troller. Here, Alice specifies which of her data will be physically published in
widely available material by “The Guardian”. She also specifies an expiration
date for this rule.

Pr
e-
pr
in
t

34 Dimitris Mitropoulos et al.

Fig. 12: Data Types and Related Data Controllers. Data subjects can
observe which data types are stored by the various data controllers. In this
case Alice can see that “The Guardian” stores her given name, her surname
and her address. By pressing the magnifier image, Alice can see all the related
uses or updates that the data controller may perform on her data and the
corresponding validity periods (see also Figure 13).

Fig. 13: Overview of Allowable Uses. Alice views the list of the allowable
uses that can be performed on her surname. Currently, the corresponding data
controller can use Alice’s surname for analytics and reporting. Both rules are
valid until 2019. Note that, Alice can revoke or edit them.

	Introduction
	Background
	Architecture
	Reference Implementation and Use
	Evaluation
	Challenges
	Related Work
	Concluding Remarks
	Appendix

