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Abstract—We introduce, what is to the best of our knowledge,
the first approach for systematically testing Object-Relational
Mapping (ORM) systems. Our approach leverages differential
testing to establish a test oracle for ORM-specific bugs. Specifi-
cally, we first generate random relational database schemas, set
up the respective databases, and then, we query these databases
using the APIs of the ORM systems under test. To tackle the
challenge that ORMs lack a common input language, we generate
queries written in an abstract query language. These abstract
queries are translated into concrete, executable ORM queries,
which are ultimately used to differentially test the correctness
of target implementations. The effectiveness of our method
heavily relies on the data inserted to the underlying databases.
Therefore, we employ a solver-based approach for producing
targeted database records with respect to the constraints of the
generated queries. We implement our approach as a tool, called
CYNTHIA, which found 25 bugs in five popular ORM systems.
The vast majority of these bugs are confirmed (23 / 25), more
than half were fixed (15 / 25), and three were marked as release
blockers by the corresponding developers.

I. INTRODUCTION

Object-Relational Mapping (ORM) is an established pro-
gramming technique [44], [13], [37] that has emerged as a
solution to the Object-Relational Impedance Mismatch prob-
lem [8], [31]. ORM provides an object-oriented interface atop
relational databases. Through that, the objects of a program
can be easily saved and retrieved from the secondary storage
without requiring boilerplate code for mapping application
data to database records. ORM not only boosts developer
productivity and reduces maintenance costs [8], [20], but also
promotes portability because it abstracts away differences of
Database Management Systems (DBMS) [8], [20].

Currently, there is a plethora of ORM implementations:
through a simple Github search, one runs into more than 50
ORM frameworks, written for almost every language. Indica-
tive examples include Django and SQLAlchemy for Python,
Hibernate for Java, ActiveRecord for Ruby, and Sequelize for
JavaScript. These systems are used by millions of applica-
tions [12] and are adopted by many popular organizations,
such as Dropbox, Gitlab, and OpenStack [9], [23], [46].

Despite their wide industrial adoption, the automated testing
of ORM systems is an overlooked problem. Current testing
efforts mainly use manually-written test suites, which, as we
demonstrate, are often insufficient for ensuring the correctness

of ORM implementations. Yet, ORM implementations are
complex [8] (typically consist of thousands lines of code) and,
unfortunately, involve a high density of bugs. For example,
the ORM implementation in the Django web framework is
the component that suffers from the most bugs [21]: 23% of
the reported bugs in Django are related to the ORM compo-
nent, and they are significantly more than the reported bugs
associated with the secondly affected component (8%). Such
ORM bugs lead to incorrect interactions with the underlying
database and cause frustrating crashes [10], wrong store and
retrieval of data [6], and even security vulnerabilities [1], [2].

To detect bugs in ORM implementations, we propose a
differential testing approach. At a high-level, our approach
exercises ORM systems by constructing equivalent queries
written in the target ORM implementations, and then compares
query results for mismatches. We begin by generating a
random database schema used to set up databases across
multiple DBMSs. We test the functionality of the target ORMs
by querying the databases using each ORM’s API. However,
since ORM systems do not share a common input format,
we design an abstract query language which is close to ORM
APIs. This allows us to build expressive queries that exercise
diverse functionality combinations across ORM implementa-
tions. Finally, we use ORM-specific translators to convert
abstract queries into concrete ones, which are executable in
the corresponding ORM implementations.

Our differential testing approach is data-oriented: beyond
queries, it is the data inserted to the underlying databases
that affect the effectiveness of the testing efforts. We em-
ploy a solver-based approach for generating targeted database
records with respect to the constraints of the generated ab-
stract queries. This improves the effectiveness of differential
testing because it minimizes the number of queries where
ORMs return empty results. Our approach goes beyond the
existing body of work in compiler and programming language
testing [47], [15], [14], [30], [43], and addresses several
challenges specific to ORM systems, such as lack of a common
input, data generation, database schema generation, or DBMS
setup. Specifically, we make the following contributions:
• We introduce the first automatic, data-oriented differential

testing approach for ORM system implementations.
• We implement CYNTHIA, an extensible open-source frame-
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1 from django.db import models
2 class Person(models.Model):
3 age = models.IntegerField()
4 name = models.CharField(max_length=20)
5 ...
6 p1 = Person(age=31, name="John")
7 p1.save()
8 p2 = Person.objects.get(age=32)
9 p2.delete()

Fig. 1: Example CRUD operations using the Django ORM.
work for systematically testing well-established ORM im-
plementations.

• We provide experimental evidence showing that our solver-
based approach is an effective technique to generate data
that are useful for differential testing.

• We use CYNTHIA to test five well-established ORM sys-
tems on four widely-used database engines, and find 25
unique bugs. The vast majority of these bugs are confirmed
(23 / 25), more than half were fixed (15 / 25), and three were
marked as release blockers by the corresponding developers.

II. BACKGROUND & MOTIVATION

We provide a brief overview of object-relational mapping
and an illustrative example of bugs that our approach can
detect in the related tools and frameworks. We then enumerate
the main challenges associated with differential testing of
object-relational mapping systems.

A. Object-Relational Mapping Systems

Object-Relational Mapping provides an abstraction over
relational data that enables programmers to interact with their
databases through the object-oriented programming paradigm.
In this context, a database schema (tables and their inter-
relationships) is abstracted through classes, called models, and
the associated database records are represented via objects
of these classes. ORM systems then provide a rich API for
basic Create, Read, Update, and Delete (CRUD) operations
on database records as well as more advanced features, such
as transaction management or query caching.

Figure 1 shows an example of database interactions using
the Django ORM system [23]. The code first declares a class
that maps to a table and to its associated columns in the
underlying database (lines 2–4). Using this class, the code
then runs simple queries. Specifically, the code creates a class
object (line 6), and based on this object, creates a new database
record by calling the save() method (line 7). Then, the code
fetches a single record from the database matching certain
criteria (line 8), and then deletes this record (line 9).

ORM system APIs provide a higher level of abstraction that
hides the mechanics of SQL queries from the programmer. For
example, the save() method results in an SQL INSERT
statement, which remains transparent to the programmer.

B. Bugs in Object-Relational Mapping Systems

To motivate the design of our testing approach, we discuss
two indicative bugs found in well-established ORM systems.

1 q1 = T1.objects.using("mysql")
2 q2 = T2.objects.using("mysql")
3 q3 = T3.objects.using("mysql")
4 //ProgrammingError: "You have an error in your

SQL syntax"
5 q1.union(q2).union(q3)
6 // Generated SQL
7 (SELECT ‘t1‘.‘id‘ FROM ‘t1‘)
8 UNION (
9 (SELECT ‘t2‘.‘id‘ FROM ‘t2‘)

10 UNION
11 (SELECT ‘t3‘.‘id‘ FROM ‘t3‘))

Fig. 2: Django generates MySQL query with invalid syntax.

1 expr = (1 + T.col)
2 squared = (expr * expr)
3 T.select(fn.sum(expr), fn.avg(squared)).all()
4 // Generated SQL
5 SELECT SUM(1 + "t"."col"),
6 AVG(1 + "t"."col" * 1 + "t"."col")
7 FROM "t" AS "t"

Fig. 3: Logic error detected in peewee ORM.

Bug in Django. Consider the Django query shown in
Figure 2 (lines 1–5). This query first fetches the records
of tables t1, t2, and t3 (lines 1–3), and it then per-
forms a chain of unions (line 5) in order to combine the
results of the individual queries. When we run this Django
code on MySQL (version 8.0.4), Django produces and runs
the SQL query shown on lines 7–12. This SQL query is
invalid on MySQL and the Django program crashes with
a django.db.utils.ProgrammingError: (1064, “Error in SQL
syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use near ’UNION’”).
This bug was detected by our approach, and was confirmed
by the Django developers.

When the Django code shown in Figure 2 is run on another
DBMS, such as SQLite or PostgreSQL, Django produces a
valid SQL query. Such inconsistencies indicate that ORM bugs
may appear (or not) depending on the underlying DBMS.
Although DBMSs share common functionality, they differ
significantly from each other [36]. Therefore, an ORM needs
to abstract away such differences and take care of running the
same ORM code on different DBMSs reliably. Unfortunatelly,
this complicates the design of ORMs: bugs may occur when
an ORM fails to produce a valid SQL query with respect to a
certain DBMS.

Bug in peewee. Figure 3 shows another ORM bug detected
by our approach. On lines 1–3, the code creates a simple
query using the peewee ORM. The query defines a simple
expression expr given by the addition of a table’s column
with 1 (line 1). The code then forms a simple query that
applies the function SUM to expr, and AVG to the square of
expr (lines 2, 3). The peewee ORM translates this high-level
query into the incorrect SQL query shown on lines 5–7. In this
SQL query, the expression passed to the aggregate function
AVG is not in the expected format because the sub-expressions
are not wrapped in parentheses: peewee incorrectly produces
AVG(1 + col ∗ 1 + col) instead of AVG((1 + col) ∗ (1 + col)).
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This bug was confirmed and fixed by the peewee developers
immediately after our report.

Unlike the Django bug discussed earlier, this peewee bug is
more subtle: Although peewee generates a grammatically and
semantically valid SQL query, this query produces incorrect
results. Unlike crashes, such subtle bugs cannot be detected
through a naive fuzzing approach. This explains our primary
design choice to adopt differential testing.

C. Challenges
To find bugs similar to the ones discussed above, we

propose a differential testing approach. Our approach is in-
spired by prior work on compiler and programming language
testing [47], [15], [14], [30], [43]. Nonetheless, applying
differential testing on ORM systems is not straightforward,
and it involves several new challenges we had to address.

Challenge 1: Lack of a common specification and input
language. ORM systems do not implement a common spec-
ification or standard. Therefore, differences in ORM results
may be due to valid but inconsistent implementations and not
due to actual bugs. Furthermore, each ORM offers its own
APIs and, to make matters worse, these APIs may even be
exposed through different programming languages. As a result,
differential testing cannot be uniformly applied to test ORM
systems in a straightforward manner.

Challenge 2: Ambiguous queries. In some ORM systems,
it is possible to write a query that lead to an SQL statement
that produces ambiguous results. An example of such query
is when the results are not ordered. In this case, the DBMS is
free to return results in any order. Another example is when
the resulting SQL query has a column a and an aggregate
function in the SELECT part, but the query does not define a
GROUP BY clause on the column a. To compare the results of
the ORM systems under test in a meaningful way, we have to
ensure that we do not generate such ambiguous ORM queries.

Challenge 3: DBMS-dependent results. As shown previ-
ously (Figure 2), there are ORM bugs that are DBMS-specific,
i.e., the bugs are triggered only when the ORM code works
on a certain DBMS. To effectively capture such bugs, we need
to differentially test the ORM systems on multiple DBMSs.
At the same time, though, differences between the underlying
DBMSs (e.g., two DBMSs may have different semantics on
arithmetic expressions) must not affect the comparisons of
ORMs. Finally, for performing safe comparisons, the ORM
code needs to run on a common reference, i.e., the ORM
queries need to run on the same database.

Challenge 4: Data generation. Beyond ORM queries, we
have to generate appropriate data to populate the databases
so that ORM systems produce non-trivial results in response
to given queries. In this way, we can reveal logic errors that
cause ORMs to fetch the wrong data from the database. For
example, it is impossible to detect the peewee bug of Figure 3
when the underlying database contains no records.

III. TESTING APPROACH

Our approach for testing ORMs is automated as shown
in Figure 4. It takes as input the ORM systems to test,

and the DBMSs where the ORM queries will run. Schema
Generation is an initial phase where we generate a number
of valid database schemas. During the Setup phase, we build
the different databases—one for each provided DBMS—with
respect to the schema generated during the first step. Then,
we proceed to the Abstract Query Generation phase which
involves the generation of queries written in the Abstract
Query Language (AQL). We design this language to abstract
ORM- and SQL-specific details and provide a common ref-
erence for testing ORMs, thus addressing “Challenge 1”. By
design, AQL queries never lead to ambiguous ORM queries
(“Challenge 2”). In the Concretization of Abstract Query phase
we use ORM-specific translators to translate each query into
a concrete one. To deal with “Challenge 4” and minimize
the number of cases where ORMs produce empty results, we
synthesize database records using a solver-based approach.
In the last step, i.e. Bug Detection, we execute the ORM
queries on diverse DBMSs, and compare their results. A
mismatch in the outputs indicates a potential bug in at least one
ORM. Notably, testing the ORM code across different DBMSs
enables us to find DBMS-dependent bugs (“Challenge 3”).

A. Schema Generation & Setup

We generate a number of schemas that capture the structure
of the databases on which each ORM under test operates. Each
schema s is a collection of tables and their associated columns.
Each column has a type that can be a serial (primary key of
the table), a number (i.e., integer or real), a string, or foreign t

which indicates a table’s relationship with another table t of
the schema. We omit schema details such as indexes, views or
column constraints (e.g., unique), as these constructs do not
affect the querying and translation mechanisms of ORMs, and
therefore, are beyond the scope of this paper.

Our method randomly generates a user-defined number of
schemas. For each table, the schema generation algorithm
creates a serial column named “id” that stands for the primary
key of the table, to guarantee that each record in the table
is unique and that there is no ambiguity in the data inserted
into the table. The remaining fields of the table are randomly
generated (optionally based on a deterministic procedure).

We use the schemas generated in the previous step to setup
and instantiate the respective DBMSs and ORMs. To setup the
DBMSs, we automatically construct an SQL script containing
all CREATE TABLE statements for creating the tables defined
in a provided schema along with their columns. Then, we
automatically generate the models for each ORM under test
by examining the structure of the newly-created databases.
To this end, we leverage tools used to ease ORM porting
to existing databases. These tools make a connection to an
existing database, introspect its structure, and automatically
construct the respective ORM model classes. An example of
such tool is the command manage.py inspectdb found
in the Django project [22].
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Fig. 4: Overview of our approach for automatically testing ORMs.

q ∈ Query ::= eval qs | qs[i] | qs[i : i] | fold { (l : α e)+ } qs
qs ∈ QuerySet ::= new t | apply λ qs | qs ∪ qs

| qs ∩ qs
λ ∈ Func ::= filter p | map d | unique φ

| sort (φ asc) | sort (φ desc)
d ∈ FieldDecl ::= l : e | hidden l : e | d; d

p ∈ Pred ::= φ⊕ e | p ∧ p | p ∨ p | ¬p
e ∈ Expr ::= c | φ | α e | e+ e | e− e | e ∗ e | e/e
φ ∈ Field ::= t.c | l | φ.c

α ∈ AggrFunc ::= count | sum | avg | max | min
⊕ ∈ BinaryOp ::= = | > | ≥ | < | ≤

| contains | startswith | endswith

Fig. 5: The syntax of the Abstract Query Language (AQL).

B. Abstract Query Generation

Following the Schema Generation & Setup phases, we
start a testing session for each individual schema. A testing
session involves the generation of multiple valid queries (with
respect to the provided schema) that are likely to reveal bugs
in the ORMs under test. These queries are represented in
the Abstract Query Language (AQL), which is close to the
APIs and the functionality of ORMs, and provides a wide
range of operations (through a functional notation) that are
commonly supported by the querying mechanism of ORMs.
AQL operations include filtering, sorting, aggregate functions,
creation of compound expressions, field labeling and aliasing,
or union and intersection of queries. By contrast, raw SQL
dialect is too low-level and many ORMs are not aware of
SQL constructs. Also, the SQL language is not rich enough
to express and capture the different API calls of ORMs. For
example, the same SQL query can be produced by calling
different combinations of ORM’s API methods. Since our
focus is detecting bugs in ORMs by exercising different
combinations of their API calls, we design AQL.

1) Abstract Query Language: Figure 5 shows the syntax
of AQL. A query in AQL is the evaluation of a query set
(eval qs). Conceptually, a query set evaluates to a set or to a
sequence of records (if the query set is ordered). Operations
such as indexing or slicing, can be applied to the result of a
query set, while AQL also supports folding. The function fold
aggregates the result of a query set into labeled scalar values
by applying one or more aggregate functions.

The simplest form of a query set is new t, which creates a
new query set from the specified table t. When this query is
evaluated, it returns all records of the table t. Then, various

1 apply (filter "addCol" > 5
2 apply (map "addCol": t1.colA + t1.t2.colB
3 new t1))
4
5 SELECT t2.colA + t2.colB AS "addCol"
6 FROM t1 as "t1"
7 JOIN t2 AS "t2" ON (t1.t2_id = t2.id)
8 WHERE (t2.colA + t2.colB > 5)

Fig. 6: Example AQL query and its equivalent SQL query.

operations can be applied to a query set through the apply
construct. In particular, AQL provides the filter p function
that returns all records of the query set that satisfy the given
predicate p. The map function is used to create new compound
fields using existing fields found in the given query set.
Specifically, map expects a sequence of field declarations of
the form l : e. This declaration creates a new field in the
current query set by binding the expression e to the label
l. Optionally, a field can be marked as hidden meaning that
it is not part of the query set, but it is used for creating
other fields (hidden fields are similar to temporary variables).
The function sort, sorts the provided query set according to
the field φ in an ascending or a descending order, while
the unique primitive removes duplicate records with respect to
the provided field φ. Finally, AQL supports the combination of
two query sets through the union and intersection operations.

A predicate consists of comparison operators (i.e., φ ⊕ e)
which are used to compare the value of a field φ with the
result of an expression e. A predicate may also contain the
usual logical operators. An expression can be a constant c,
a field reference φ, an application of an aggregate function,
or an expression derived from the usual arithmetic operators.
Finally, a field φ ∈ Field may be a reference to a column of
a table, i.e., t.c, a label l created by the map function, or a
reference to a column of a table’s relationship (e.g., t1.t2.c).

Figure 6 shows an example query written in AQL and its
equivalent query written in SQL. In this AQL query, we apply
two functions. First, we apply map to the query set given
by new t1 (lines 2–3) in order to create a new field named
“addCol” given by the addition between the t1.colA and
t1.t2.colB columns. Notice that since the latter column
refers to a column of the table t2, which has a relationship
with the original table t1, in SQL this is interpreted as a JOIN
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Algorithm 1: Generating Abstract Queries
1 fun genQuerySet(σ, min, max)=
2 stopCond ← σ[depth] > min ∧ (σ[depth] > max ∨

randBool())
3 if stopCond then σ[qs]
4 else
5 match chooseFrom(σ[qsNodes]) with
6 case NewNode ⇒
7 t←chooseTable(σ[schema])
8 σ2 ← σ[qs → New(t), t→ t]
9 genQuerySet(σ2++, min, max)

10 case FilterNode ⇒
11 p←genPred(σ++, min, max)
12 σ2 ← σ[qs → Apply(filter, p, σ[qs])]
13 genQuerySet(σ2++, min, max)
14 case ... ⇒
15
16 fun genPred(σ, min, max)=
17 match chooseFrom(σ[predNodes]) with
18 case EqPredNode ⇒
19 f ←choosseField(σ)
20 Eq(f , genExpr(σ++, min, max))
21 case ... ⇒
22
23 fun genExpr(σ, min, max)=
24 match chooseFrom(exprNodes) with
25 case FieldRefNode ⇒
26 Field(chooseField(σ))
27 case ... ⇒

between t1 and t2 (line 7). Finally, we apply filter to get
the records satisfying addCol > 5 (line 1).

2) Generating AQL Queries: Algorithm 1 shows how we
generate AQL queries. Our goal is to exercise all of the
features supported by AQL as well as different combina-
tions of them. The main component of Algorithm 1 is the
genQuerySet function (lines 1–14). This function generates
an AQL query set by recursively constructing a valid AST
node based on the syntax of Figure 5. The algorithm ensures
that the depth of the resulting query set ranges within specific
limits specified by the user-provided parameters min and max
(see stopCond, line 2). The parameter σ keeps track of the
state of the query set that is being generated. The initial state
contains the schema (σ[schema]) based on which the algorithm
creates table and column references. For what follows, the
operation σ++ results in a new state where the value of
σ[depth] is incremented.

Our algorithm first constructs a new query set (new t) that
queries a certain table (lines 6–9). To do so, we randomly
choose a table to query from the underlying schema (line 7).
Then, the algorithm updates the state σ in order to properly
build the next available AST node in the next iteration. In
particular, it initializes the AST of the current query set to
New(t), while it sets the queried table to t (line 8). Then, it re-
cursively calls genQuerySet to construct the next available
AST nodes (line 9). For example, on lines 10–13, the algorithm
applies filter to the current query set given by σ[qs]. To achieve
this, the algorithm randomly generates a predicate p using the
function genPred (lines 11, 16–21), and then extends the
AST of the current query set to Apply(filter p, σ[qs]) (line 12).

P (c, i)→ c

P (f, i)→ fi

P (e1 ⊕ e2, i)→ P (e1, i)⊕ P (e2, i)

A(c, g)→ c

A(f, g)→ P (f, i) i ∈ g
A(count e, g)→ len(g)

A(sum e, g)→
∑
i∈g

P (e, i)

A(avg e, g)→ (
∑
i∈g

P (e, i))/len(g)

A(max e, g)→ max(e, g)

A(min e, g)→ min(e, g)

A(e1 ⊕ e2, g)→ A(e1, g)⊕A(e2, g)

max(e, g) =


P (e, i) g = {i}
ite(P (e, i) > P (e, j), P (e, i), P (e, j)) g = {i, j}
ite(P (e, i) > max(e, g′), P (e, i),max(e, g′)) g = i · g′

min(e, g) = . . .

Fig. 7: Translating AQL expressions into SMT formulae.

The AQL predicates and expressions are generated in a similar
manner (see lines 16–21, 23–27). Finally, after producing a
valid query set qs, we randomly decide for any operations
applied to qs, i.e., slicing, indexing, or folding.

C. Concretization of Abstract Queries

During this phase, our approach derives multiple, concrete
ORM queries (one for each target ORM) using ORM-specific
translators (Section III-C2). Before producing these queries,
our method populates the underlying databases with targeted
data in order to enable differential testing (Section III-C1).

1) Generating Database Records: We follow a solver-based
approach for generating a small number of targeted database
records that satisfy the constraints of a given AQL query.
Specifically, we model an AQL query and its constraints
into SMT formulae which we pass to a theorem prover. The
theorem prover then solves the given SMT formulae and
generates assignments that stand for the records inserted into
the database. This approach improves the effectiveness of
differential testing, as the corresponding ORMs will likely
return non-empty results which in turn, can be used for
detecting discrepancies in ORM outputs. In the following, we
explain how we model an AQL query to an SMT formulae.

Modeling table columns. We introduce a sequence of
variables for every column of the queried table. Each variable
in this sequence, namely xi, represents the value of the column
x in the ith record of the table, where 1 ≤ i ≤ n, and n
is a specified number of records inserted into the database.
After declaring these variables, we model the uniqueness of the
table’s id. To this end, we introduce the following constraint:
idi 6= idj for 1 ≤ i ≤ n, where idi refers to the id of the ith

record. Now, for what follows, F (t1, t2)i is the value of the
foreign key defined in t1 and refers to the table t2, in the ith

record of t1, while V (t) gives the set of columns defined in
table t, except for its id column.

Modeling joins. An AQL query may reference columns
defined in tables joined with the initial one. We traverse
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the AST of the given AQL query to identify such column
references and compute the set of joins. For example, when
encountering the t1.t2.c reference, we know that there is join
from table t1 to t2. After computing the set of joins, we
introduce new variables for the columns of every joined table
as we did for the root table. Then, for a join between two tables
t1, t2, we create the following constraints, for 1 ≤ i < j ≤ n:

• F (t1, t2)i = id(t2)i
• F (t1, t2)i = F (t1, t2)j ⇒

∧
v∈V (t2)

vi = vj

The first constraint indicates that the foreign key of the source
table t1 must be the same with the id of the target table t2 for
all the records of t1. The second constraint denotes that when
there are two records in t1, namely i and j, where the foreign
keys for t2 are equal, all column values of the joined table t2
must be also equal in the respective rows (e.g., vi = vj for
v ∈ V (t2)). The last constraint ensures that two records of t2
with the same id are identical.

Modeling AQL predicates. We model AQL predicates
using two different ways, depending on whether the given
predicate contains expressions consisting of an aggregate
function (e.g., sum) or not. The simplest case is when a
predicate does not contain an aggregate function. Such a
predicate operates on all the records of the table. Converting
a non-aggregate predicate is straightforward. For example, we
convert the AQL equality predicate t.c = e into:

∃i. t.ci = P (e, i) for 1 ≤ i ≤ n
In the above formula, t.ci is the SMT variable that represents
the value of the column t.c in the ith record of the table, while
the function P (e, i) encodes the given AQL expression e into
a logical formula as shown in Figure 7. The above logical
formula encodes the constraint that there must be at least one
record in the table where the value of the column t.c is equal
with the value of the expression e.

An AQL predicate containing an aggregate function works
on aggregated data formed by groups of records, and is
conceptually similar to a condition that appears in the HAVING
clause of an SQL query. To model such predicates as logical
formulae, we first create a set G, consisting of a specified
number of groups of records. Each group g ∈ G includes all
records that are identical based on a set of grouping fields
GF . To compute the set of grouping fields GF , we traverse
the AST of the given AQL query and add all column references
that are not passed to an aggregate function. We then generate
constraints so that the records of the same group are identical
with respect to each field found in GF . Finally, we model
aggregate predicates and their AQL expressions using the
function A(e, g) as defined in Figure 7. For example, the AQL
predicate t.a = sum t.b is translated into:

∃g ∈ G. A(t.a, g) = A(sum t.b, g)

In the example above, A(t.a, g) gives the SMT variable of the
column t.a associated with a random record of the group g.
This is because t.a is a grouping field (it is not part of an
aggregate function) and all the records of g are the same with
respect to the value of t.a. On the other hand, A(sum t.b, g)

1 import os, django
2 from django.db.models import *
3 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
4 "djangoproject.settings")
5 django.setup()
6 from project.models import *
7
8 addCol = F("colA") + F("t2__colB")
9 q = T1.objects.using("sqlite")\

10 .annotate(addCol=addCol).filter(addCol__gt=5)\
11 .values("addCol")
12 for r in q:
13 print("addCol", r["addCol"])

Fig. 8: The Django code related to the AQL query of Figure 6.

aggregates all records of the group g based on the column t.b,
i.e.,

∑
i∈g P (t.b, i). As Figure 7 indicates, the main difference

between the functions P (e, i) and A(e, g) is that the former
encodes the expression e as an SMT formula with regards to
the record i, while the latter reasons about a group of records.

Modeling Unions & Intersections. Modeling unions and
intersections is straightforward. Each sub-query of such an
operation (e.g., qs1 ∪ qs2) is translated into an SMT formula
separately. Then the individual formulae are combined through
logical operators. For unions, we use the disjunction operator
(∨), while we use ∧ in case of intersection.

2) From Abstract Queries to Concrete ORM Queries: A
translator takes an AQL query, converts it into an ORM query,
and produces an executable file that runs the ORM query
on a specified DBMS. Hence, a translator produces multiple
executable files, one for each provided DBMS.

Every translator consists of three components. The first
component adds the necessary boilerplate code for running
the ORM query (e.g., imports, creating the connection with the
database, etc.). The second component performs the transla-
tion. Specifically, it uses the API of the corresponding ORM to
generate the actual ORM query. The last component dumps the
results of the query to standard output, again by using the API
of the specified ORM. When the query produces a sequence
of records, the translator produces code that iterates over each
element of the sequence and prints this element to standard
output. To properly dump a record, the translator emits code
that prints the value of every field defined in the AQL query.
For example, when the query contains an application of map,
the translator produces code that prints the value of every non-
hidden field defined in map. When the given query does not
apply map, then the id of the fetched records is printed. Finally,
for queries returning scalar values (i.e., fold), the translator
emits code that prints these scalar values.

Figure 8 shows the executable file that corresponds to the
AQL query of Figure 6 and is produced by the Django trans-
lator. Notice that this file runs the Django query on SQLite.
Lines 1–7 contain the necessary setup code for running the
query, the actual Django query is on lines 8–11, while on
lines 12–13, we print the results of the query.

D. Bug Detection

The last step of our testing approach is to run the exe-
cutables produced by the translators and compare the output
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of these executables for mismatches. To do so, we run every
executable and capture its standard output and standard error.

Our approach makes DBMS-specific comparisons: the out-
put of a query q written in ORM o1 and run on DBMS
x is compared against the same query q written in another
ORM o2 and run on the same DBMS x. We do this because
certain query features may be unsupported by some DBMS
(e.g., MySQL does not support intersection queries.) Based
on the above, our approach identifies mismatches and flags
them as bugs, when one of the following conditions holds:
(1) the same query written in two different ORMs produces
different results on the same DBMS, or (2) a query written in
a certain ORM runs successfully on a specific DBMS, but the
same query written in another ORM fails on the same DBMS.
The second condition allows us to detect cases where an ORM
produced either a grammatically or semantically invalid SQL
query with regards to a certain DBMS.

Remark. When a query is not ordered, the underlying
DBMS is free to fetch the records in any order. To make
safe comparisons between unordered queries, our approach
first sorts the outputs of these queries, and then compares them.

E. Implementation Details

We have implemented our data-oriented testing approach
as a Scala command-line tool called CYNTHIA,1 which we
plan to make publicly available, concurrently with this paper’s
publication. The interface of CYNTHIA takes as input the
names of the ORMs to test along with a set of DBMS on
which CYNTHIA runs the ORM code. The tool implements the
steps described in Figure 4. For efficiency, CYNTHIA processes
testing sessions and ORM queries in parallel using Scala
futures [25]. Optionally, CYNTHIA may also receive a seed
from the user to make the testing procedure deterministic.

Beyond generating schemas and AQL queries, CYN-
THIA also provides a replay mode, which is used to replay
a testing session (i.e., repeat the execution of existing AQL
queries) for either debugging purposes or experimenting with
different settings (e.g., running existing queries on different
DBMSs). Finally, to generate database records, our tool uses
the Z3 theorem prover [18], configured with a user-specified
timeout.

Regarding the implementation effort of ORM translators,
each translator consists of roughly 300–400 lines of Scala
code. In particular, every translator traverses the AST of AQL
queries and emits code that uses the API of the corresponding
ORM. Adding a new translator is guided by extending and
implementing an abstract Scala class. We therefore argue that
supporting a new ORM requires little development effort.

IV. EVALUATION

We seek answers to the following research questions:
RQ1 Is CYNTHIA effective in finding new bugs in established

ORM systems? (Section IV-B)

1 In Greek mythology, Cynthia was the epithet of Artemis, the goddess of
the hunt.

TABLE I: The ORM systems examined in our evaluation.

ORM Language LoC(k) Stars(k) Used By(k)
ActiveRecord (Rails) Ruby 49.2 46.2 1400
Django Python 37.7 51.3 466
Sequelize JavaScript 25.3 22.6 211
SQLAlchemy Python 150 2.6 182
peewee Python 7.6 7.7 10

RQ2 What are the characteristics of the bugs discovered by
CYNTHIA? (Section IV-C)

RQ3 Is solver-based approach effective in generating appro-
priate data for differential testing? (Section IV-D)

A. Experimental Setup

Target ORM systems. We applied CYNTHIA to the five
ORM systems listed in Table I. We selected these ORMs based
on the following criteria:
• Usage: the ORM should be established and widely-used.
• High-level Logic: the ORM should expose a high-level API

that abstracts SQL-specific details.
• Automation: the ORM must provide tools for easy setup and

utilities for generating model classes (recall Section III-A).
According to the Github’s statistics, all ORMs incorporated
in our evaluation are used by millions of applications. For
example, ActiveRecord, which is part of the Rails web frame-
work, is employed by more than 1400k Github repositories.
Further, many popular applications and services rely on them.
For example, “Nova”, OpenStack’s cloud computing service,
uses SQLAlchemy for interacting with the database. Finally,
exposing high-level APIs from programmers can be prone to
bugs / errors [5]. Notably, Django, which provides the most
expressive API has the most bugs as we will see later.

DBMS. We ran the ORM queries on four DBMSs: SQLite,
MySQL, PostgreSQL, and Microsoft’s SQL Server (MSSQL).
The first three DBMSs are extensively used by the open-
source community and are supported by all the examined
ORMs. Although MSSQL is supported by a subset of ORMs
(i.e., Django, SQLAlchemy, Sequelize), we selected it because
is one of the most popular proprietary DBMS.

Cynthia Configuration. We ran CYNTHIA on a regular
basis, and tested the “master” version of the selected ORMs.
In each run, CYNTHIA generated five random schemas. After
setting up the databases, CYNTHIA spawned a testing ses-
sion, and processed each testing session separately until a
specific timeout was reached (eight hours). For every query,
Z3 produced 5 records, while we set the solver timeout to 5
seconds. After each run, we manually inspected the reported
mismatches for new bugs, and report them to the developers.

B. RQ1: New Bugs Found

CYNTHIA found 25 bugs in total, out of which, 15 were
fixed by the developers, 8 were confirmed but are not yet fixed,
2 are still unconfirmed, while one confirmed bug in Django
was previously known and marked as duplicate. Table II sum-
marizes the bug detection results. Django is the system where
we detected the most bugs (10), followed by SQLAlchemy
(6), peewee and Sequelize (4), and finally ActiveRecord (1).
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TABLE II: Bugs detected by CYNTHIA.

ORM Total Fixed Confirmed Unconfirmed
Django 10 4 5 1

SQLAlchemy 6 5 1 0
peewee 4 4 0 0

Sequelize 4 2 1 1
ActiveRecord 1 0 1 0

Total 25 15 8 2

TABLE III: The types of the detected bugs and the DBMSs
where the bugs manifest themselves.

Type #Bugs All DBMS SQLite MySQL PostgreSQL MSSQL
Logic Error 12 12 0 0 0 0
Invalid SQL 8 1 1 2 3 2

Crash 5 3 0 1 2 0
Total 25 16 1 3 5 2

60% (15 / 25) of the reported bugs have already been fixed
by the developers demonstrating the correctness and impor-
tance of the reported issues. We were particularly impressed
by the prompt fixes of SQLAlchemy and peewee developers:
they fixed most of the bugs within six hours after our bug
report. Furthermore, three Django bugs were marked as release
blockers by the corresponding developers.

C. RQ2: Characteristics of Discovered Bugs

We classify the detected bugs into three categories. The
first category (logic errors) contains cases where an ORM
produced a grammatically and semantically valid SQL query,
but this query did not fetch the right data from the database.
The second category (invalid SQL) contains cases where an
ORM yielded either a grammatically or semantically invalid
SQL query. The third category (crashes) contains cases where
an ORM crashed unexpectedly, without even producing an
SQL query. Most of the discovered bugs (12) were logic
ones (Table III). Unlike differential testing, a naive fuzzing
technique is unable to identify such bugs. In a significant
number of cases (8), the ORM generated an invalid SQL query,
while the remaining cases (5) are related to crashes.

Table III also presents how many bugs are DBMS-
dependent. All logic errors are DBMS-independent, i.e., they
appear regardless of the underlying DBMS. By constrast, the
majority of “Invalid SQL” bugs are DBMS-dependent. For
example, three instances of “Invalid SQL” bugs happen when
the code operates on PostgreSQL. Overall, 16 / 25 of the
reported bugs are DBMS-independent. Yet, there is a large
number of DBMS-dependent bugs (9 / 25). This validates our
intuition to test ORMs across multiple database engines.

Based on the feature that ORMs fail to handle correctly, we
further classify the discovered bugs into six categories.

Expression-related bugs. Expression-related bugs are the
most common ones (7/25). This category involves cases where
ORMs fail to produce an SQL expression that respects the
original ORM query. As an example of this category, consider
the peewee bug (Figure 3) discussed in Section III-D. In this
bug, peewee produces an SQL expression (i.e., 1+col∗1+col)
that is not equivalent with the high-level peewee expression
written by the programmer (see Figure 3, lines 1, 2).

Distinct-related bugs. DISTINCT is a keyword in SQL
that when present, it removes all duplicate records from the
result set. ORM systems expose this functionality through a
simple method call (typically called distinct()). Although
the use of this feature looks simple, we detected five bugs
related to this functionality. Figure 9a shows a buggy query
in ActiveRecord associated with DISTINCT. The intended
functionality of this query is to fetch all the records of the table
“Comments”, remove the duplicates, and then apply AVG to a
column named “rating”. However, ActiveRecord produces an
SQL query that ignores the call of distinct, and therefore,
it applies AVG to the entire set of records.

String-comparison-related bugs. String comparisons in
SQL are typically done via the LIKE operator. These op-
erators expect a pattern which SQL matches the value of
a string against. There are two characters (namely ‘%’ and
‘_’) that have special semantics when used as part of a
LIKE pattern. For example, ‘%’ is a wildcard character that
matches any sequence of characters. ORMs typically abstract
LIKE with high-level methods, such as contains(). ORMs
must escape the aforementioned characters when passed as
an argument to these methods. We found four cases where
ORMs fail to escape these characters leading to wrong string
comparisons in the SQL part.

Consider Figure 9b that presents a bug in Sequelize. The
Sequelize query shown in this figure attempts to fetch the
records of “Comments” where the column “text” contains the
character "_". Sequelize produces the SQL condition shown
on line 1. Although the character "_" has a special meaning
(it matches every single character), Sequelize does not escape
it. As a result, the generated SQL query incorrectly retrieves
all the records of the table.

Combined-query-related bugs. SQL supports the com-
bination of individual queries using the UNION and
INTERSECT keywords. ORM systems support this feature
by implementing the union and intersect methods. Four
bugs discovered by CYNTHIA are associated with this func-
tionality of ORMs. An example of this category of bugs has
been already discussed in Section III-D (Recall Figure 2). In
particular, Django is unable to produce a valid sequence of
UNION operations when using MySQL as the database engine.

Group-by-related bugs. The GROUP BY clause is used
when selecting or referencing a table’s column together with
aggregated data. GROUP BY comes with some caveats that
ORMs need to consider in order to properly handle this SQL
feature. We ran into three bugs caused by incorrect handling
of the GROUP BY functionality.

Consider the Django query shown in Figure 9c. Django
builds three expressions: the constant 3 (lines 1, 5), a reference
to the column “text”, and an aggregate function SUM applied
to the column “rating”. Django places all non-aggregate ex-
pressions on GROUP BY as shown on line 3. Integer constants
have special semantics when they are part of GROUP BY. For
example, GROUP BY 3 means to group by the third expression
of the SELECT clause of the query (i.e., SUM("rating")).
This makes the generated SQL query invalid, leading to
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1 Comment.new(:rating => 4)
2 Comment.new(:rating => 4)
3 # It incorrectly applies AVG

to duplicate records.
4 Comment.select("comments.

rating").distinct.average
("comments.rating")

(a) A bug in ActiveRecord associated with
DISTINCT.

1 // WHERE Comment.text LIKE
’%_%’

2 Comment.findAll({
3 where: {
4 text: {[Op.substring]: "_"}
5 })
6 })

(b) A buggy Sequelize query associated
with incorrect string comparison.

1 cons = ExpressionWrapper(
2 Value(3),...)
3 # GROUP BY Comment.text, 3
4 Comment.objects\
5 .annotate(cons=cons)\
6 .values("cons", "text")\
7 .annotate(sum=Sum("rating"))

(c) A buggy Django query associated with
GROUP BY.

Fig. 9: A collection of bugs discovered by CYNTHIA.
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Fig. 10: Percentage of the unsatisfied queries per data gener-
ation strategy using a sample of 20 testing sessions.

“ProgrammingError: aggregate functions are not allowed in
GROUP BY”. The developers fixed this by ignoring constant
expressions from the set of grouping fields.

Aliasing-related bugs. SQL allows column aliasing through
the AS construct. ORM systems also support aliasing. CYN-
THIA uncovered three bugs where the corresponding ORMs
either do not construct the alias correctly, or do not make a
reference to a legal alias.

As an example of an aliasing-related bug,
consider the SQLAlchemy query: session.query(
Model.column.label("exists")). When running
this query on SQLite, SQLAlchemy generates the following
SQL code: SELECT "model"."column" AS exists
FROM model. Unfortunately, this SQL query is invalid
because “exists” is a reserved keyword in SQLite.
As a result, the execution of this query throws an
“sqlite3.OperationalError: near ”exists”: syntax error”
message. To fix this bug, the developers of SQLAlchemy
wrapped the reserved word with quotes (i.e., AS "exists").

D. RQ3: Effectiveness of Solver-Based Data Generation

For effectively identifying mismatches between the out-
puts of ORMs, it is important that ORMs return non-empty
results for the given queries. Empty results indicate that
the corresponding query was unsatisfied with respect to the
data inserted to the database. Empty results can potentially
hide logic errors that otherwise would be uncovered if the
corresponding ORMs could get some data from the database
and we were able to notice differences in their results.

To demonstrate the effectiveness of our solver-based data
generation approach and its suitability for differential testing,

we compare it against a simplistic approach that populates
the database with random records a-priori [36], [35], i.e., it
inserts data while setting up the tables, without considering
the constraints of the generated queries.

We used CYNTHIA to spawn 20 testing sessions. For each
testing session, we generated 100 queries and compared the
results of ORMs as usual. At the end of each testing session,
we measured in how many queries the ORMs returned empty
results. We then replayed each testing session, using a naive
data generation strategy, and tried out different settings: gen-
erating 50 random records, 100, 300, 500 and finally 1000.

Figure 10 illustrates the comparison results. The y-axis
shows the percentage of the unsatisfied queries. Every box plot
contains the observations taken from the 20 testing sessions,
along with the median (horizontal line), the mean (black
triangle), and the maximum and minimum values. The solver-
based approach leads to significantly fewer unsatisfied queries
(median: 7.5%, mean: 8.9%) than the naive approach (mean
and median values are roughly 38% for all the different
settings). The reason why there is still a number of unsatisfied
queries even with the solver-based approach is because either
the corresponding AQL query was unsatisfiable or the solver
timed out. Regarding the naive data generation, increasing
the number of the records inserted to the database does not
improve the effectiveness of this method at all, i.e., generating
50 records is almost identical to generating 1000 records.

We also tried to reproduce the discovered bugs using the
naive data generation strategy. This strategy missed 3 out of
the 12 logic errors previously detected by CYNTHIA, because
it failed to generate appropriate data for the database. In these
cases, the differential testing was meaningless, as the ORMs
returned empty results. We did not consider the rest categories
(e.g., invalid SQL), as in these cases the corresponding ORMs
produce an error message regardless of the data stored in the
database. This implies that it is the quality of the inserted
data that matters, and not the quantity: it is better to produce
5 targeted records than 1000 random records.

E. Discussion

Regression Bugs. Running CYNTHIA on the master version
of ORMs enabled us to find a couple of interesting regression
bugs. Regression bugs indicate that a feature that worked
properly in previous versions, is broken in the current im-
plementation. These bugs were of paramount importance for
the developers. For example, Django developers marked our
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regression bugs as release blockers. Also, SQLAlchemy de-
velopers commented: “it’s very useful if you are in fact alpha
testing it.” (i.e., master branch). We also noticed that some
bugs that were allegedly fixed were triggered again by new
queries. This observation was confirmed by the developers,
who, indeed reopened and fixed old bugs reported by us.

ORMs. Although it is the de-facto framework for Python,
the Django ORM is the system where our approach detected
the most bugs. One may wonder why we detected so many
bugs in Django, while we uncovered only one bug in Ac-
tiveRecord. The reason is that Django is a more high-level
ORM than ActiveRecord: it hides every single SQL-detail
via its API. On the other hand, ActiveRecord’s API provides
some functionalities that are closer to SQL. For example,
ActiveRecord supports arithmetic operations and aliasing by
writing plain SQL. Thus, ActiveRecord does not employ any
sophisticated translation mechanism and in many cases, the
input of the programmer is passed directly to the SQL code.

DBMSs. CYNTHIA identified five PostgreSQL-related bugs.
These ORM bugs are triggered only when the DBMS is
switched to PostgreSQL. On the other hand, only one ORM
bug is related to SQLite. This happens because PostgreSQL is
much stricter than SQLite (and even MySQL). Specifically,
unlike MySQL and SQLite, PostgreSQL has a strict type
system, and comes with many restrictions that ORMs need
to take into account when producing SQL code. Also, we
note that during our testing efforts, we discovered one bug
in SQLite. The bug was already known and fixed in a later
version of SQLite though. This implies that with some tuning,
our approach may be also useful for testing DBMSs.

V. RELATED WORK

Quality in ORM-based Applications. A number of tools
and studies have been proposed to improve the quality of
ORM-based applications. Chen et al. [13] introduced a static
analysis framework for identifying ORM queries in Java ap-
plications that degrade the response times of database engines.
Their approach first explores the paths of the program to
identify database accesses, and then detects performance anti-
patterns through a rule-based approach. Furthermore, their
technique provides an assessment mechanism for prioritizing
the fixes of the detected performance issues. Subsequent
work [17], [40] focused on fixing performance issues through
automated means. In particular, Singh et al. [40] introduced
a genetic algorithm for tuning the configuration of ORM
systems to achieve better performance. Davar et al. [17]
proposed a refactoring framework by applying a set of known
transformation rules to inefficient ORM-based code. Unlike
prior work that finds issues in the ORM-based applications, our
work is the first to find issues in the ORM implementations.

Testing of DBMSs. The work of Slutz [41] is the first to un-
cover bugs in DBMSs using a differential testing approach. To
safely compare results, his method generates random queries
on a small subset of the SQL language that is common across
DBMSs. Over the past decade, there have been numerous
approaches for generating (targeted) SQL queries in order to

effectively test DBMSs [11], [7], [33], [4]. The most recent
approaches are SQLsmith [39] and SQLfuzz [26], two SQL
query generators that respectively target crashes and regression
bugs in popular DBMSs. Our approach differs from all these
query generators because it produces queries in a higher-
level query language (AQL) and adopts differential testing to
detect logic errors beyond crashes or regression bugs. Khalek
et al. [3], [4] followed a solver-based approach for testing
DBMSs. Their work employs a relational constraint solver to
generate valid database records with respect to a given SQL
query and database schema. Besides populating the database,
their method also determines the expected results of an SQL
query and the authors use this oracle to find bugs. We also
use an SMT-solver to populate the database, but we specify
the test oracle by adopting a differential testing approach.

More recently, Rigger et al. [36] proposed the Pivoted Query
Synthesis (PQS) technique for testing database engines. PQS
generates SQL queries so that they fetch a specific record from
the database. In this way, PQS forms the test oracle: failing
to fetch the expected record reveals a potential bug in DBMS.
Unlike this work, our approach adopts differential testing for
determining the oracle. Also, beyond reasoning about a single
record, our approach is able to detect bugs involving operations
on result sets (e.g., aggregate functions, sorting, distinct). In
an attempt to find optimization bugs in database systems,
their subsequent work introduced a metamorphic testing tech-
nique called Non-Optimizing Reference Engine Construction
(NoREC) [35]. At a high-level, NoREC applies a semantics-
preserving transformation to a given SQL query in way that the
various optimizations performed by the DBMS are disabled.
Finally, NoREC compares the results of the original and the
resulting queries for mismatches. These previous approaches
are tailored to testing DBMSs, i.e., they aim to find DBMS-
specific bugs (e.g., optimization bugs, bugs associated with
the evaluation of WHERE clauses). ORM systems differ from
database engines, and suffer from other types of bugs.

Differential Testing. Differential testing [32], [34] is a
generally-applicable testing technique that aims to find bugs
in software implementations by addressing the oracle prob-
lem [45]. Differential testing has been successfully applied
to various domains, most notably compilers and runtime
systems [47], [30], [15], [14], [43]. Following this success,
differential testing has been applied to many other domains,
from program analyzers, such as model checkers [28], debug-
gers [29], and symbolic execution engines [27], to probabilistic
programming languages [19], and software libraries and ser-
vices [42], [38], [16], [24]. Inspired by this work, we also
employ differential testing for finding bugs in ORM systems.

VI. CONCLUSION

A fundamental requirement for differential testing is that the
implementations under test must be equivalent. By introducing
an appropriate layer of abstraction that hides the implemen-
tation differences (AQL), we showed that differential testing
can be also applicable in systems with (seemingly) dissimilar
interfaces, such as ORMs.
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Further, we addressed a previously uncommon, ORM-
specific challenge: the generation of data that are likely to
produce non-trivial results in response to given queries. To do
so, we applied a solver-based approach to synthesize targeted
records, dependant on the constraints of the generated inputs.
Our findings showed that when compared to other simplistic
data generation strategies, the solver-based approach enhances
the bug detection capability.

We demonstrated the importance and practicality of our
approach by systematically testing five popular open-source
ORM systems. We discovered 25 unique bugs, most of which
have been fixed by the developers. The effectiveness of our
method can be further improved by considering other forms of
queries and functionalities, such as insert or update operations,
and transaction management.

Data-intensive applications are becoming more and more
pervasive. Therefore, the reliability of data processing and
data management systems, such as ORMs, is of paramount
importance. We believe that the data-oriented nature of this
work can pave the way in testing such systems, including
NoSQL and stream processing implementations.
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